计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (29): 226-229.DOI: 10.3778/j.issn.1002-8331.2009.29.068
刘双印
LIU Shuang-yin
摘要: 针对BP神经网络在经济预测存在的问题,提出了一种新的经济预测模型──免疫人工鱼群神经网络(IAFSA-NN)。通过免疫人工鱼群算法(IAFSA)训练神经网络,能显著提高网络的学习精度、收敛速度、泛化能力、还能在一定程度上克服BP神经网络的缺陷。以广东省湛江市的经济数据进行建模,给出了IAFSA训练神经网络的基本原理和步骤,构建了一个免疫人工鱼群神经网络的GDP预测模型,并运用MATLAB7.0进行仿真。实证表明,该模型预测结果优于BP网络预测方法,更接近实际数据,IAFSA神经网络用于经济预测是有效可行的。
中图分类号: