计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (26): 30-33.DOI: 10.3778/j.issn.1002-8331.2009.26.009

• 研究、探讨 • 上一篇    下一篇

解释模型类理论及其极小三I-算法

张兴芳   

  1. 聊城大学 数学科学学院,山东 聊城 252059
  • 收稿日期:2008-10-07 修回日期:2009-03-03 出版日期:2009-09-11 发布日期:2009-09-11
  • 通讯作者: 张兴芳

Theory of class of interpretation models and infinitesimal Triple I arithmetic

ZHANG Xing-fang   

  1. School of Mathematics Science,Liaocheng University,Liaocheng,Shandong 252059,China
  • Received:2008-10-07 Revised:2009-03-03 Online:2009-09-11 Published:2009-09-11
  • Contact: ZHANG Xing-fang

摘要: 首先在多类(many-sorted)一阶形式系统Lukms、Gödms,∏msL*ms中通过引入多类一阶模糊语言Lms的解释模型类及基于解释模型类的α-逻辑有效公式的概念,建立了多类一阶模糊语言的解释模型类理论;然后,基于上述理论探讨了模糊推理算法(CRI及三I算法)与其理论Г-推理的关系,从而进一步奠定了模糊推理的理论基础,同时得到一种新型的模糊推理算法,称为极小三I算法。

关键词: 模糊推理, 多类一阶模糊语言, 解释模型类, α-逻辑有效公式

Abstract: In first-order form systems Lukms,Gödms,∏ms and L*ms,by introducing the concepts of class of interpretation models and α-logical effective formulas under many-sorted first-order fuzzy language,the theory of class of interpretation models is presented;and then,based on above theory this paper discusses the relation between fuzzy reasoning(CRI arithmetic and Triple I arithmetic) and theory Г-reasoning,consequently the base of theory for fuzzy reasoning is established,and a new fuzzy reasoning arithmetic are given.

Key words: fuzzy reasoning, many-sorted first-order fuzzy language, interpretation model class, α-logical effective formulas

中图分类号: