计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (24): 122-124.DOI: 10.3778/j.issn.1002-8331.2009.24.036

• 数据库、信息处理 • 上一篇    下一篇

基于模糊C均值算法的类合并聚类算法研究

张玉芳,罗俊玮,熊忠阳   

  1. 重庆大学 计算机学院,重庆 400044

  • 收稿日期:2008-10-17 修回日期:2009-01-04 出版日期:2009-08-21 发布日期:2009-08-21
  • 通讯作者: 张玉芳

Study on class merging cluster algorithm based on Fuzzy C-Means

ZHANG Yu-fang,LUO Jun-wei,XIONG Zhong-yang   

  1. 重庆大学 计算机学院,重庆 400044
  • Received:2008-10-17 Revised:2009-01-04 Online:2009-08-21 Published:2009-08-21
  • Contact: ZHANG Yu-fang

摘要: 针对FCM(Fuzzy C-Means)算法对于初始聚类中心敏感,并只适合于发现球状类型簇的缺陷,提出采用冗余聚类中心初始化的方法降低算法对初始聚类中心的依赖,并先暂时将大簇或者延伸形状的簇分割成用多个小类表示,再利用隶属度矩阵提供的信息合并相邻的小类为大类,对FCM算法进行改进。实验结果显示改进的FCM算法能够在一定程度上识别不规则的簇,并减小FCM算法对初始聚类中心的依赖。

关键词: 模糊聚类, 模糊C均值算法, 隶属度矩阵

Abstract: FCM(Fuzzy C-Means) algorithm has several defects,being sensitive to the initial cluster centers,only being applied to the type found in globular clusters.There are several methods used for reducing the algorithm dependence on the initial cluster centers,expressing big cluster or extension of shape used several small clusters.At last,this paper merges adjacent small cluster into a big cluster,using the information provided by partition matrix.Experiment result demonstrates that the improved FCM algorithm can distinguish irregular cluster to a certain extent,decrease the dependence on the initial cluster centers.

Key words: fuzzy clustering, Fuzzy C-Means algorithm(FCM), partition matrix

中图分类号: