计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (16): 176-179.DOI: 10.3778/j.issn.1002-8331.2009.16.051

• 图形、图像、模式识别 • 上一篇    下一篇

基于支持向量机和粗糙集的图像检索算法

张文娇,闫德勤,桑 雨   

  1. 辽宁师范大学 计算机与信息技术学院,辽宁 大连 116029
  • 收稿日期:2008-04-03 修回日期:2008-06-16 出版日期:2009-06-01 发布日期:2009-06-01
  • 通讯作者: 张文娇

Image retrieval algorithm based on support vector machine and rough set theory

ZHANG Wen-jiao,YAN De-qin,SANG Yu   

  1. College of Computer and Information Technology,Liaoning Normal University,Dalian,Liaoning 116029,China
  • Received:2008-04-03 Revised:2008-06-16 Online:2009-06-01 Published:2009-06-01
  • Contact: ZHANG Wen-jiao

摘要: 研究基于支持向量机和粗糙集的相关反馈图像检索算法。利用粗糙集理论,通过对训练集的学习,构造分类规则,对支持向量机反馈后的结果再次进行处理。实验显示,与现有方法相比,该方法在图像检索的性能和时间上都有明显的改善。

关键词: 图像检索, 相关反馈, 支持向量机, 粗糙集

Abstract: Relevance feedback algorithm based on support vector machine and rough set for image retrieval is approached.By using rough set theory,this paper structures classification rules and processes the support vector machine feedback results with learning the train set.Experiments show that compared with the existing methods,the new algorithm can significantly improve the quality of the retrieval performance and save time.

Key words: image retrieval, relevance feedback, support vector machine, rough set