计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (1): 198-203.DOI: 10.3778/j.issn.1002-8331.2009.01.061
王顺凤,张建伟
WANG Shun-feng,ZHANG Jian-wei
摘要: 将脑部组织从MR图像中提取出来已经成为脑部图像处理中的一个重要环节,它可以提高后继的脑组织定位、容积测量等处理的精确度。但由于脑MR图像往往具有偏移场、弱边界和强噪音,使得基于图像梯度信息的水平集模型很难得到真实解。高斯混合模型使用了图像全局信息,能较好地处理弱边界问题。但传统的高斯混合模型仅使用了灰度值分布信息,未对像素的位置进行考虑,这使得其在处理噪音图像时效果并不是很理想。利用图像多种信息构造新的信息场,使得由信息场构造的高斯混合模型更能降低偏移场、噪音等影响,同时防止曲线从弱边界泄漏。传统的高斯混合模型求解参数时,往往仅使用EM算法,易陷入局部最优。针对这个缺点,引入粒子群算法,并对其进行改进,使得改进的算法可以较快地得到精确解。对脑MR图像分割实验表明该模型可得到较好的分割效果。