计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (9): 55-57.

• 理论研究 • 上一篇    下一篇

问题有解与状态空间图的核为有界格的等价性理论

刘小晶1,杨淑群2,邓 昶1   

  1. 1.嘉兴学院 信息工程学院,浙江 嘉兴 314001
    2.福建师范大学 软件学院,福州 350007
  • 收稿日期:2007-07-10 修回日期:2007-10-09 出版日期:2008-03-21 发布日期:2008-03-21
  • 通讯作者: 刘小晶

Theory of equivalence about bounded lattice of problems and kernel

LIU Xiao-jing1,YANG Shu-qun2,DENG Chang1   

  1. 1.School of Information Engineering,Jiaxing University,Jiaxing,Zhejiang 314001,China
    2.Faculty of Software,Fujian Normal University,Fuzhou 350007,China
  • Received:2007-07-10 Revised:2007-10-09 Online:2008-03-21 Published:2008-03-21
  • Contact: LIU Xiao-jing

摘要: 作为求解问题的工具,状态空间图具有直观、清晰的特点,在人工智能应用甚广。论文首次分析状态空间图有解的代数特征,提出序状态空间图及核的概念,证明了问题有解与其状态空间图的核为有界格是等价的,并给出两个实例加以说明,另外给出有关核的性质。

关键词: 序状态空间图, 核, 有界格

Abstract: As a tool,state-space graph has a clear characteristic and applied very wide in the artificial intelligence.In this paper,the algebra characteristic about whether problems can be resolved or not is first analyzed,the concepts of poset state-space graph and kernel are put forward,the equivalence about whether problem can be resolved or not and Kernel is a bounded lattice is proved,two examples are given to illustrate this and  kernel-related nature are provided.

Key words: poset state-space graph, kernel, bounded lattice