计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (8): 49-52.
• 学术探讨 • 上一篇 下一篇
石锦风,冯 斌,孙 俊
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
SHI Jin-feng,FENG Bin,SUN Jun
Received:
Revised:
Online:
Published:
Contact:
摘要: 由于量子粒子群优化算法仍有可能会出现早熟现象,因此将变异机制引入量子粒子群优化算法以使算法跳出局部最优并增强其全局搜索能力,并将改进后的量子粒子群优化算法用于求解作业车间调度问题。仿真实例表明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法、粒子群优化算法和量子粒子群优化算法。
Abstract: Because Quantum-behaved Particle Swarm Optimization(QPSO) algorithm possibly run into prematurity,the mutation mechanism is introduced into QPSO algorithm to escape from local optima and strengthen its global search ability,and the improved QPSO algorithm is applied to solve Job-Shop Scheduling Problem.The simulation results show that this algorithm has better global convergence ability and more rapid convergence,and it is superior to Genetic Algorithm,Particle Swarm Optimization algorithm and QPSO algorithm.
石锦风,冯 斌,孙 俊. 用带变异因子的QPSO算法解决Job-Shop调度问题[J]. 计算机工程与应用, 2008, 44(8): 49-52.
SHI Jin-feng,FENG Bin,SUN Jun. Solving job-shop scheduling problem with QPSO algorithm with mutation operator[J]. Computer Engineering and Applications, 2008, 44(8): 49-52.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2008/V44/I8/49