计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (8): 34-36.

• 博士论坛 • 上一篇    下一篇

广义信息熵测度在医学图像配准中的应用

杨金宝,刘常春,胡顺波   

  1. 山东大学 控制科学与工程学院,济南 250061
  • 收稿日期:2007-12-13 修回日期:2007-01-23 出版日期:2008-03-11 发布日期:2008-03-11
  • 通讯作者: 杨金宝

Medical image registration based on generalized entropy measures

YANG Jin-bao,LIU Chang-chun,HU Shun-bo   

  1. School of Control Science and Engineering,Shandong University,Ji’nan 250061,China
  • Received:2007-12-13 Revised:2007-01-23 Online:2008-03-11 Published:2008-03-11
  • Contact: YANG Jin-bao

摘要: 针对互信息测度在配准医学图像时易陷入局部极值的缺点,将Shannon熵扩展到广义熵,提出了三种基于广义熵的信息测度。对于收敛性能的评价,提出收敛宽度和收敛半径的概念。通过人体脑部CT/MR和MR-T1/T2图像的刚体配准实验,从计算时间、收敛性能和配准精度方面,对归一化互信息、广义熵信息测度进行了比较与分析。实验结果表明,在不损失计算时间和配准精度的前提下,广义信息熵测度SRI_0.9和GMI_0.9的收敛性能优于归一化互信息测度,对噪声有很强的鲁棒性。

Abstract: In order to reduce local maximum and misregistration of mutual information in medical image registration,three information measures based on generalized entropy instead of the Shannon entropy,named as FRI-alpha,SRI-alpha and GMI-t information measures,are proposed.The convergence width and radius are used for evaluating the measure convergence.The computing time,convergence and accuracy are studied by applying these measures to rigid registration of Computed Tomography(CT)/Magnetic Resonance(MR) and MR-T1/T2 simulated images.The results of tests show that the generalized entropy measures outperform normalized mutual information in convergence performance,without compromising computational speed and registration accuracy.