计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (7): 171-173.

• 网络、通信与安全 • 上一篇    下一篇

模糊神经网络分类器在盲均衡算法中的应用

孙云山1,李艳琴2,张立毅1,3   

  1. 1.天津商业大学 信息工程学院,天津 300134
    2.防灾科技学院 自动化技术系,北京 101601
    3.天津大学 电子信息工程学院,天津 300003
  • 收稿日期:2007-06-22 修回日期:2007-08-13 出版日期:2008-03-01 发布日期:2008-03-01
  • 通讯作者: 孙云山

Application of fuzzy neural network classifier in blind equalization algorithm

SUN Yun-shan1,LI Yan-qin2,ZHANG Li-yi1,3   

  1. 1.Department of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China
    2.Department of Automation,Institute of Disaster Prevention Science and Technology,Beijing 101601,China
    3.Department of Electric Information Engineering,Tianjin University,Tianjin 300003,China
  • Received:2007-06-22 Revised:2007-08-13 Online:2008-03-01 Published:2008-03-01
  • Contact: SUN Yun-shan

摘要: 提出一种基于模糊神经网络分类器的盲均衡算法,将盲信道估计与模糊神经网络分类器相结合,先对通信信道进行盲估计,然后利用卷积原理重建信号,用模糊神经网络替代原有的判决器,从而实现了盲均衡。通过仿真实验证明,该算法加快了收敛速度,减小了剩余误差,降低了误码率。

Abstract: A blind equalization algorithm based on fuzzy neural network is proposed.Blind channel estimation and fuzzy neural network classifier are utilized to realize blind equalization.Firstly blind channel estimation is used to identify the character of the channel.Signals are rebuilt by de-convolution,and the original judgment equipment is replaced by fuzzy neural network classifier.Simulations indicate that the novel algorithm improves convergence and bit error rate and so on.