计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (4): 227-229.
张小丹,吕建平
ZHANG Xiao-dan,LV Jian-ping
摘要: 基于基因表达谱对组织样本进行分类,在疾病诊断领域,是个非常重要的研究课题。在基因表达数据中,基因的数量(几千个)相对于数据样本(几十个)的个数通常比较多;也就是说,数据的维数相比于数据点的个数来说比较高(这个就是采样不足问题)。过高的维数(特征或基因数)将给分类问题带来极大的挑战。提出了结合非相关线性判别式分析方法(ULDA)和支持向量机(SVM)分类算法,对结肠癌组织样本进行分类识别,并同其他方法作了比较研究,分类效果得到了提高;结果表明了该方法的可行性和有效性。