计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (4): 208-211.
陈才扣1,2,黄建平1,刘永俊1
CHEN Cai-kou1,2,HUANG Jian-ping1,LIU Yong-jun1
摘要: 对于单训练样本人脸识别,基于每人多个训练样本的传统人脸识别算法效果均不太理想。尤其是基于Fisher线性鉴别准则的一些方法,由于类内散布矩阵为零矩阵,根本无法进行识别。针对这一问题进行了分析研究,提出了一种新的样本扩充方法,即泛滑动窗法。采用“大窗口,小步长”的机制进行窗口图像采集和样本扩充,不仅增加了训练样本,而且充分保持和强化了原始样本模式固有的类内和类间信息。然后,使用加权二维线性鉴别分析方法(Weighted 2DLDA)对上面获得的窗口图像进行特征抽取。在ORL国际标准人脸库上进行的实验表明了所提算法的可行性和有效性。