计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (4): 182-183.
薛丽华,殷苌茗,李立云,胡明辉
XUE Li-hua,YIN Chang-ming,LI Li-yun,HU Ming-hui
摘要: 强化学习作为一种重要的机器学习方法,已经被广泛应用于许多单智能体和多智能体系统。强化学习的性能受所使用的学习算法及其参数的影响很大,不同的学习算法或者参数很小的变化都可能导致学习性能很大的变化。当环境模型未知时,确定最好的算法和最优的参数是困难的。为了避免参数的影响,提出了一种基于多Agent的融合Sarsa(λ)学习系统,它把强化学习环境当作多智能体环境来处理。最后用迷宫实验仿真,结果验证了该方法的可行性和有效性。