计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (3): 110-113.

• 研发、测试 • 上一篇    下一篇

基于Laplacian残差扩展的可逆嵌入算法

邓世文,刘焕平,叶宏宇   

  1. 哈尔滨师范大学 信息科学系,哈尔滨 150025
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-01-21 发布日期:2008-01-21
  • 通讯作者: 邓世文

High capacity reversible data embedding base on Laplacian residual difference expansion

DENG Shi-wen,LIU Huan-ping,YE Hong-yu   

  1. Department of Information and Science,Harbin Normal University,Harbin 150025,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-01-21 Published:2008-01-21
  • Contact: DENG Shi-wen

摘要: 近年来国际上对无损数字水印的研究十分关注,嵌入了水印的数字图像在水印被提出以后可以无损地恢复出其原始图数据。提出了一种基于Laplacian残差扩展的无损数字水印算法,能够简单、高效地实现数字图像的可逆数据嵌入与提取。在嵌入容量和嵌入后的图像质量上得到了较为理想的结果,而且实现了数据嵌入的嵌入与数据的提取不对称,在不暴露图像的原始信息的情况下仍然能够正确地提取嵌入基中的数据,非常适用于一些保密性要求较强的环境。

关键词: 无损数字水印, 无损数据嵌入, Laplacian残差扩展, 可逆整数变换

Abstract: Reversible data embedding has drawn lots of interest recently.The original image can be restored exactly after the embeded data is extracted.In this paper,the author presents a novel reversible data embedding method for digital images based on Laplacian residual difference expansion that can embed and extract the data simply and efficiently,and achieve very high embedding capacity and quality of the image.Furthermore,the process of embedding and extracting is asymmetric and the infomation of the original image is still secret after the hidden data(watermarking) is extracted.The method that present is appropriate to some special scenario.

Key words: lossless digital watermarking, reversible data embedding, Laplacian residual difference expansion, reversible integer transform