计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (23): 24-27.DOI: 10.3778/j.issn.1002-8331.2008.23.008
刘庆杰1,蔺启忠2
LIU Qing-jie1,LIN Qi-zhong2
摘要: 基于独特型免疫网络原理,提出了一种新型的分区记忆模式人工独特型网络模型,并利用其对卫星遥感数据进行了分类。该模型在结构上将免疫网络的记忆抗体划分为特异记忆抗体区和自由记忆抗体区。前者的主要功能是记忆各类别抗原的特异特征,后者为前者提供各种类型的抗体源。记忆抗体间按照亚动力学原理进行调节,实现免疫网络的寻优过程。基于上述分区,它在初次免疫响应过程中实现网络的搭建和训练,在二次免疫响应过程中实现信息提取。最后利用该模型对ETM数据进行地物分类,并与传统分类方法进行对比。结果表明:该模型的总分类精度和Kappa系数分别是92.6%和0.91,优于传统分类方法。