计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (19): 53-56.
兰 舟,孙世新
LAN Zhou,SUN Shi-xin
摘要: 随着任务调度问题的广泛研究,包括遗传算法在内的许多新方法被引入到任务调度领域。然而,传统的遗传算法存在早熟收敛和后期进化停滞两个严重不足。为了克服这些不足,提出了算法MPLS。MPLS算法采用多种群共同进化的思想来维持种群多样性。同时,MPLS算法将水平集概念引入到任务调度研究中,以改进迭代收敛速度。基于第三方测试数据集,将MPLS的性能和GTMS、MSGS和NGS算法进行了对比。比较结果表明,MPLS算法获得的调度长度远好于GTMS、MSGS算法,略好于NGS算法。MPLS算法能将种群多样性维持在一个很高的水平。MPLS算法在调度长度和种群多样性方面要优于其它算法。