计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (19): 172-174.

• 图形、图像、模式识别 • 上一篇    下一篇

回声状态网络及其在图像边缘检测中的应用

裴承丹   

  1. 中南民族大学 工商学院 计算机系,武汉 430223
  • 收稿日期:2007-09-07 修回日期:2007-12-14 出版日期:2008-07-01 发布日期:2008-07-01
  • 通讯作者: 裴承丹

Echo state networks and its application on image edge detection

PEI Cheng-dan   

  1. Department of Computer Science,School of Industry and Merchandise,South-Central University for Nationalities,Wuhan 430223,China
  • Received:2007-09-07 Revised:2007-12-14 Online:2008-07-01 Published:2008-07-01
  • Contact: PEI Cheng-dan

摘要: 循环神经网络(RNN,也称反馈神经网络)是一种重要的人工神经网络,与前馈神经网络相比具有更好的学习能力和更快的收敛速度,但其隐层结构的设计一直是个难点问题。回声状态网络(ESN)有效地解决了上述问题,相比于以前的循环神经网络,其具有结构独特、稳定性好、学习过程简单快捷等特点。介绍了回声状态网络及其学习方法,将其用于图像的边缘检测中,取得了良好的效果。

关键词: 回声状态网络, 边界检测, 统计向量

Abstract: Recurrent Neural Networks(RNN) is a kind of important artificial neural networks with better ability for learning and rate of convergence in comparison with forward neural networks,however,the design of the structure of the hidden-layer is a difficult problem all the time.Echo State Networks has no such problems with special construction,good stability,short-cut learning process.Application of ESN to the edge detection of images has been introduced after the presentation of the structure and method of learning of ESN,resulting well.

Key words: Echo State Networks(ESN), edge detection, statistical vector