计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (12): 139-141.
廖志芳1,陈宇宙1,樊晓平1,瞿志华1,2
LIAO Zhi-fang1,CHEN Yu-zhou1,FAN Xiao-ping1,QU Zhi-hua1,2
摘要: 非平衡混合数据是指数据集中类别不同的样本在数量上存在着较大的差别;同时样本数据集中的数据是非单一的数据类型,即它包含多种类型,如数值型和文本型数据。在对混合型数据的分类算法中,计数最近邻分类算法(CwkNN)可以有效地对混合型数据进行分类,但该算法对数据的非平衡性处理效果不是太理想。在CwkNN的基础之上结合数据的非平衡性特点提出了基于全局密度和K-密度的分类算法来提高少数类样本的权重,从而提高数据的分类精确度。实验结果表明,全局密度分类算法和CwkNN算法的分类精度相当,K-局部密度分类算法在一定程度上提高了分类的精度。