计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (10): 98-103.
张 伟1,2,郝江锋3,项俊平4,5,胡茂林4,5
ZHANG Wei1,2,HAO Jiang-feng3,Xiang Jun-ping4,5,HU Mao-lin4,5
摘要: 蛋白质-蛋白质作用面上的结构特征对于研究蛋白质功能具有重要意义。提出了一种新的、基于统计直方图提取蛋白质作用面特征的方法,并且利用提取出的作用面特征,结合概率神经网络,实现了对作用面结构类型的分类预测。从预测结果来看,统计直方图提取出的特征,对蛋白质作用面结构具有很好的区分能力,而且可以通过调节划分的区间个数和节点的选取方式,达到对作用面结构的不同粒度的描述,以适用于不同目的的研究,这可能对与结构有关的某些生物信息学问题的研究具有启发性。利用概率神经网络对作用面结构进行分类预测,避开了费时的结构比对和数据库搜索,且训练快速,扩展能力强,正确率高,对独立测试集的911个蛋白复合物视在正确率达到90.67%。基于该算法的MATLAB分类器软件可以通过E-Mail与作者联系获取。