计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (1): 162-164.
• 数据库与信息处理 • 上一篇 下一篇
程舒通1,2,徐从富1,但红卫1
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
CHENG Shu-tong1,2,XU Cong-fu1,DAN Hong-wei1
Received:
Revised:
Online:
Published:
Contact:
摘要: 从模式的相似度信息和支持度大小两方面分析了前人聚类算法中采用的距离函数的缺陷,提出了改进距离函数的新算法—Mix算法。实验研究证明,算法在实现过程中可以相应减少时间消耗和聚类结果的错误程度,提高聚类质量,从而得到比较好的聚类效果。
关键词: 数据挖掘, 频繁模式, 聚类, 距离函数
Abstract: Analyses the defect of distance function which has been introduced in clustering arithmetic before both from similar degree and sustain degree,and puts forward the arithmetic which improves distance function-Mix arithmetic.The research has certified that the arithmetic can decrease the expense in time and the error degree in result of clustering in the process of achievement,and has improved the quality of clustering,can reach the better clustering result accordingly.
Key words: data mining, frequent pattern, clustering, distance function
程舒通1,2,徐从富1,但红卫1. 频繁模式聚类算法改进研究[J]. 计算机工程与应用, 2008, 44(1): 162-164.
CHENG Shu-tong1,2,XU Cong-fu1,DAN Hong-wei1. Research of improving clustering arithmetic in frequent pattern[J]. Computer Engineering and Applications, 2008, 44(1): 162-164.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2008/V44/I1/162