计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (9): 227-230.
• 工程与应用 • 上一篇 下一篇
史操 许灿辉 杨家红
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 传统的PCA和LDA算法受限于“小样本问题”,且对象素的高阶相关性不敏感。本文将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量实验研究表明,本文方法在特征提取方面明显优于PCA,KPCA,LDA等其他传统的人脸识别方法,在简化分类器的同时,也可以获得高识别率。
关键词: 核函数方法, 规范化KDDA, KPCA, 小样本问题
Abstract: Traditional methods, such as PCA(Principle Component Analysis ) and LDA(Linear Discriminant Analysis), not only suffer from the so-called “Small Sample Size”(SSS) problem, but also are insensitive to the high order relations of image pixels. In this paper, we propose kernel machine based regularized discriminant analysis method, which projects the image space to the high dimensional feature subspace through some non-linear transformation, and then performs discriminant analysis using the “kernel-skills” on the new feature subspace. Extensive experiments on ORL database indicate the method proposed outperforms the traditional PCA, KPCA, LDA methods on feature extraction. It can also simplify the classifier design, meanwhile, accomplish high recognition rate.
Key words: kernel methods, Regularized Kernel Direct Discriminant Analysis, Kernel Principle Component Analysis (KPCA), Small Sample Size Problem (SSS)
史操 许灿辉 杨家红. 基于规范化KDDA的人脸识别[J]. 计算机工程与应用, 2007, 43(9): 227-230.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I9/227