计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (9): 184-185.

• 工程与应用 • 上一篇    下一篇

支持向量机在结肠动力无创诊断中的应用

张文强 颜国正 于莲芝   

  1. 上海交通大学仪器系820所 上海交通大学电子信息学院820研究所
  • 收稿日期:2006-08-14 修回日期:1900-01-01 出版日期:2007-03-21 发布日期:2007-03-21
  • 通讯作者: 张文强

Application of Support Vector Machine to Noninvasive Diagnosis of Colonic Motility

WenQiang Zhang   

  • Received:2006-08-14 Revised:1900-01-01 Online:2007-03-21 Published:2007-03-21
  • Contact: WenQiang Zhang

摘要: 在结肠动力疾病的无创诊断中, 由于存在临床样本数量有限、病人个体的特异性和数据本身的噪声等因素的影响, 要进行非常准确的分类诊断是困难的。支持向量机是在统计学习理论基础上发展而来的一种新的通用学习方法, 较好地解决了有限样本的学习分类问题。本文采用非线性支持向量机分类算法, 构造支持向量机分类器, 并将其应用于结肠动力的分类诊断。非线性支持向量机取得了较高的准确率, 表明支持向量机在结肠动力疾病的分类诊断中有很大的应用潜力。

关键词: 结肠动力, 无创诊断, 支持向量机

Abstract: Due to the deficiency of clinic cases, character of patient and noise in the raw data, it is very difficult to diagnose noninvasive colonic motility complaints accurately. Support Vector Machine (SVM) is an efficient novel method originated from the statistical learning theory. It is powerful in machine learning to solve problems with finite samples. In this paper, SVM is employed in detecting colonic motility and the results are encouraged compared with conventional methods. The accuracy of nonlinear SVM classifier is especially high in all kinds of classifiers, which indicates the potential application of SVM in colonic motility diagnosis.

Key words: colonic motility, noninvasive diagnosis, support vector machine