计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (32): 80-82.

• 学术探讨 • 上一篇    下一篇

一种新型神经网络在自由曲面重构中的应用

孙立镌,靳 辉   

  1. 哈尔滨理工大学 计算机科学与技术学院,哈尔滨 150080
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-11-11 发布日期:2007-11-11
  • 通讯作者: 孙立镌

One kind of new neural network in freeform surface reconstruction application

SUN Li-quan,JIN Hui   

  1. College of Computer Science & Technology,Harbin University of Science and Technology,Harbin 150080,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-11-11 Published:2007-11-11
  • Contact: SUN Li-quan

摘要: 以层次划分和模块化为思想基础,提出了一种新型神经网络模型对自由曲面进行重构,即基于径向基函数(RBF)神经网络的混合网络模型。先后运用减聚类方法、正交最小二乘法、最大似然法对网络进行有无监督的混合训练,旨在解决大样本集的简化建模和快速训练问题,提高混合网络输出精度。实验结果表明该网络模型使得曲面的拟合精度有了明显提高。

Abstract: This article proposed one kind of new nerve network model,on basis of the thought of the level division and the module,namely RBF mixture neural network model.Successively utilizes the way of reduce-gathers,OLS and the maximum likelihood method in order to solve the problem of modeling and the fast training for big sample collection simplification and enhance the output precision of mixture neural network.The test result indicated the fitting precision of freeform surface was enhanced distinctly by this network model.