计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (31): 178-181.
王春年,梁吉业
WANG Chun-nian,LIANG Ji-ye
摘要: 采用粗糙集理论和属性值聚类相结合的方法,从决策树最优化的三个原则对其进行优化。首先,采用粗糙集理论的约简功能求出相对核,并利用信息熵作为启发信息求出相对约简,以此来保证生成决策树的路径最短和减少决策树的节点数。其次,在选择特征属性时,在信息熵增益最大的前提下,根据属性值间的相异性距离来对属性值聚类使其能够接近单峰分布。通过对UCI数据实验分析,结果表明很大程度上减少了决策树的节点数和决策树的深度。