计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (30): 37-39.

• 学术探讨 • 上一篇    下一篇

基于TS-MRF与模糊MLL模型的图像分割

吕庆文,周少为,陈武凡   

  1. 南方医科大学 生物医学工程学院,广州 510515
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-10-21 发布日期:2007-10-21
  • 通讯作者: 吕庆文

Image segmentation based on TS-MRF and fuzzy MLL

LV Qing-wen,ZHOU Shao-wei,CHEN Wu-fan   

  1. School of BME,Southern Medical University,Guangzhou 510515,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-10-21 Published:2007-10-21
  • Contact: LV Qing-wen

摘要: 基于树结构的马尔可夫随机场(TS-MRF),提出模糊多级逻辑模型(fuzzy MLL),并提出了一种新的图像分割算法——模糊TS-MRF算法。与传统的MRF分割算法和TS-MRF算法比较,该方法在计算耗时增加很少的情况下,对分割精度提高较大。更为重要的是,该方法提供了一个新思路,使得基于MRF的先验信息的描述更为精细。

Abstract: Proposes a new image segmentation method based on Tree-Structured Markov Random Field(TS-MRF) and fuzzy Multi-Level Logistic(MLL) model,where fuzziness has been introduced into TS-MRF and the calculation of potential function becomes more meticulous and more precise.Compares with the classical TS-MRF method,the quantitative errors are smaller under the same conditions when the new algorithm is used,while the computational time increases little.More interesting,this method may hint one simple and efficient way to make MRF-based prior(not limited in MLL model) more precise,i.e.making the MRF-based clique changed to be fuzzy clique by using posterior probability.