计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (30): 242-244.
陈 莺,徐 晨,张维强
CHEN Ying,XU Chen,ZHANG Wei-qiang
摘要: Huang变换是近几年发展起来处理非平稳信号的新方法。时间序列同信号一样具有非平稳的特性,研究了Huang变换在时间序列预测中的应用。首先将时间序列通过Huang变换分解为有限个固有模态函数和一个残余函数之和,每一个的固有模态函数反映了时间序列在各个尺度的特征,而残余函数则很好地反映了时间序列的总体趋势,然后应用BP神经网络对各个固有模态函数和残余函数进行预测,最后将所有的预测值重构叠加,就得到原始时间序列的预测值。实例证明,基于Huang变换和BP神经网络的时间序列的预测方法,优于小波变换和神经网络相结合的预测方法,提高了预测精度。