计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (3): 189-189.

• 工程与应用 • 上一篇    下一篇

基于微分进化算法的多阶段投资组合优化

江家宝 尤振燕 孙俊   

  1. 江南大学信息工程学院 江南大学信息工程学院
  • 收稿日期:2006-05-22 修回日期:1900-01-01 出版日期:2007-01-21 发布日期:2007-01-21
  • 通讯作者: 江家宝

multi-stage portfolio optimization using Differention Evolution Algorithms

  • Received:2006-05-22 Revised:1900-01-01 Online:2007-01-21 Published:2007-01-21

摘要: 投资组合优化问题就是决定每个具有特定风险和回报的投资资产在总投资价值中的分配比例。在不断变化的金融市场中,多阶段投资组合优化就是通过周期性重新平衡投资资产比例管理投资组合以达到投资风险最小或投资回报最大。本文的目的是研究基于微分进化算法在多阶段投资组合优化中制定投资决策的方法,目标函数是最大化个人经济效益或最大化周期结束时个人财富。通过比较用微分进化算法和遗传算法(GA)优化同样的资产对象所得到的期望收益率均值与方差,我们所提出的方法的优越性被美国标准普尔指数100的不同股票和现金分配优化所证实。

关键词: 微分进化, 最优化, 多阶段投资组合, 资产分配

Abstract: Portfolio optimization problem decides the percentage of the overall portfolio value allocated to each portfolio component with specified risk-return characteristics. A mul- tistage optimization manages portfolio in constantly changing financial markets by periodi- cally rebalancing the asset portfolio to achieve return maximization and/or risk minimization. This paper purpose is to study the method of decision-making in the field of multi-stage portfolio optimization useing Differention Evolution Algorithms. The objective function is to maximize one’s economic utility or end-of-period wealth. And introduces how to use Differention Evolution Algorithms to find best portfolio according to objective function. By comparing the expect return and their variances that come from optimizing the allocation of cash and various stocks in the market of USA using Differention Evolution Algorithms with Genetic Algorithms,the performance of our method is demonstrated.

Key words: Differention-Evolution, 0ptimization, multi-stage-portfolio, asset allocation