计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (29): 182-185.

• 数据库与信息处理 • 上一篇    下一篇

基于小波和支持向量机的多尺度时间序列预测

曲文龙1,2,李海燕1,刘永伟1,杨炳儒2   

  1. 1.石家庄经济学院 计算机系,石家庄 050031
    2.北京科技大学 信息工程学院,北京 100083
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-10-11 发布日期:2007-10-11
  • 通讯作者: 曲文龙

Research on multi-scale prediction of time series based on wavelet and Support Vector Machines

QU Wen-long1,2,LI Hai-yan1,LIU Yong-wei1,YANG Bing-ru2   

  1. 1.Department of Computer Science,Shijiazhuang University of Economics,Shijiazhuang 050031,China
    2.Information Engineering College,University of Science and Technology Beijing,Beijing 100083,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-10-11 Published:2007-10-11
  • Contact: QU Wen-long

摘要: 介绍了相空间重构和基于支持向量机的时间序列预测建模技术,提出了基于小波和支持向量机的复杂时间序列预测方法,利用小波对复杂时间序列进行多尺度分解,对重构后的近似序列和细节序列分别利用支持向量机进行回归预测并将结果融合。对股票数据进行预测,试验结果表明该方法预测精度高于单尺度支持向量机和神经网络预测方法,可用于复杂非平稳时间序列的预测。

关键词: 时间序列预测, 小波, 支持向量机, 多尺度, 数据挖掘

Abstract: The technology of phase construction and modeling of time series prediction based on SVM(Support Vector Machines)was introduced firstly.A complicated time series predicting method based on Support Vector Machines and wavelet was proposed.It performances multiple-scaled decomposition on complicated time series using discrete wavelet transform.Then the reconstructed approximate series and detail series were regressed and predicted respectively using SVM and the outcomes were composed finally.The prediction model was established and applied it to the stock data.Experimental result indicates that the prediction model has superiority over simple SVM and ANN(Artificial Neural Network) for it has higher prediction precision and is applicable to predicting complicated and unstable time series.

Key words: time series prediction, wavelet, SVM, multiple scale, data mining