计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (28): 86-88.

• 学术探讨 • 上一篇    下一篇

覆盖近似空间的约简理论

胡 军1,2,张 闽1   

  1. 1.重庆邮电大学 计算机科学与技术学院,重庆 400065
    2.西安电子科技大学 电子工程学院,西安 710071
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-10-01 发布日期:2007-10-01
  • 通讯作者: 胡 军

Reduction theory of covering approximation space

HU Jun1,2,ZHANG Min1   

  1. 1.College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    2.School of Electronic Engineering,Xidian University,Xi’an 710071,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-10-01 Published:2007-10-01
  • Contact: HU Jun

摘要: 覆盖近似空间是对Pawlak的近似空间的一种扩展,Bonikowski研究了覆盖近似空间下的Rough近似及其性质,William提出了覆盖近似空间下的绝对约简,该约简能够在保持近似空间的知识不减的情况下简化近似空间。定义了覆盖近似空间下的相对约简,该约简旨在得到支持度最大的分类知识,并且发现在约简前后覆盖近似空间的分类能力保持不变。基于此提出了覆盖近似空间的知识约简框图及算法,该算法能够去除近似空间中的绝对冗余知识和相对冗余知识。

关键词: 覆盖近似空间, 粗糙集, 约简

Abstract: Covering approximation space is a kind of extension of Pawlak’s approximation space.Its rough approximation and properties were studied deeply by Bonikowski,and William proposed the absolute reduction of covering approximation space.The relative reduction is proposed in this paper,and the rough approximations keep unchanged under the reduced space.A reduction diagram of covering approximation space is presented in the end.It can reduce not only the absolute redundant knowledge but also the relative redundant knowledge.

Key words: covering approximation space, rough set, reduction