计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (28): 243-245.

• 工程与应用 • 上一篇    下一篇

基于神经网络的北京市水体水华短期预报系统

刘载文1,杨 斌1,黄振芳2,张 艳3   

  1. 1.北京工商大学 信息工程学院,北京 100037
    2.北京市水文总站,北京 100038
    3.青岛黄海学院,山东 青岛 266472
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-10-01 发布日期:2007-10-01
  • 通讯作者: 刘载文

Water-bloom short-time predicting system of Beijing based on neural network

LIU Zai-wen1,YANG Bin1,HUANG Zhen-fang2,ZHANG Yan3   

  1. 1.School of Information Engineering,Beijing Technology and Business University,Beijing 100037,China
    2.Beijing Water Authority,Beijing 100038,China
    3.Qingdao Huanghai College,Qingdao,Shandong 266472,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-10-01 Published:2007-10-01
  • Contact: LIU Zai-wen

摘要: 采用算法改进型的BP神经网络,选择叶绿素含量、磷、氮磷比、电导率和水温五个参数作为模型输入,以预测1日、3日和5日后的叶绿素含量为目标,构建了北京市长河水系水华短期预报系统。该系统三个周期的预测精度分别达到了97.2%、94%、88.3%,并且具有较好的泛化能力。相比于其它智能算法,BP神经网络结构简单、方便实用,仍然具有很强的应用性。

关键词: 水华, 神经网络, 预报, 叶绿素, 北京

Abstract: A water-bloom short-time predicting system of Beijing CHANGHE water system is founded with ameliorated BP neural network,in which content of chlorophyll,phosphor,ratio of nitrogen and phosphor,conductance and temperature of water are chose as the inputs of model and the target is to predict the contents of chlorophyll after 1 day,3 days and 5 days.The precisions of three periods,which the system get,reached separately 97.2%,94%,88.3%,and the system has good universality.Compared with other intelligent methods,BP neural network is simple,convenient and practicality,and has good appliance.

Key words: water-bloom, neural network, predicting, chlorophyll, beijing