计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (28): 240-242.

• 工程与应用 • 上一篇    下一篇

遗传/粒子群混合算法在飞剪机结构优化中的应用

贾寒飞1,霍军周2   

  1. 1.上海宝钢工程技术有限公司,上海 201900
    2.大连理工大学 机械工程学院,辽宁 大连 116024
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-10-01 发布日期:2007-10-01
  • 通讯作者: 贾寒飞

Optimal mechanism design of shearing machine using genetic/particle swarm hybrid algorithm

JIA Han-fei1,Huo Jun-zhou2   

  1. 1.Shanghai BaoSteel Engineering & Equipment Co. Ltd.,Shanghai 201900,China
    2.School of Mechanical Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-10-01 Published:2007-10-01
  • Contact: JIA Han-fei

摘要: 飞剪机结构参数设计需满足若干技术性能要求才能保证剪切质量。飞剪机结构参数优化设计问题要满足多个非线性约束要求,同时需优化多个目标函数,提出遗传算法/粒子群混合算法用于曲柄连杆式飞剪机结构参数优化设计,结合各自算法的优势,在算法运行初期利用遗传算法的全局搜索能力进行优化搜索,在算法运行后期利用粒子群较强的局部搜索能力进行搜索,综合考虑多个目标函数和约束条件,通过实例计算表明,该混合方法可以稳定、有效的获取到满意的优化设计结果。

关键词: 遗传算法, 粒子群算法, 飞剪机, 结构优化

Abstract: The shearing machine is a important complex accessory equipment in continue mode rolling mill,its mechanism concerns the shearing quality of steel.The Shearing Machine Mechanism Design Problem(SMMDP) belongs to muti-objective optimization problem.In this paper,a Genetic/Particle Swarm hybrid algorithm is adopted to solve the SMMDP,in which GA is used to strengthen the global search at the early running time,PSO is used to enhance the local search at the later running time and multi-objective functions and constraints are considered together.The experiment results show that the hybrid algorithm can obtain the superior solution stably and effectively.

Key words: Genetic Algorithm(GA), Particle Swarm Optimization(PSO), shearing machine, mechanism optimization