计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (27): 84-87.

• 学术探讨 • 上一篇    下一篇

求解旅行商问题的高效自适应混合蚂蚁算法

陈星宇,全惠云,肖 伟   

  1. 湖南师范大学 数学与计算机科学学院,长沙 410081
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-09-21 发布日期:2007-09-21
  • 通讯作者: 陈星宇

Improved adaptive hybrid ant algorithm for traveling salesman problem

CHEN Xing-yu,QUAN Hui-yun,XIAO Wei   

  1. School of Mathematics and Computer Science,Hunan Normal University,Changsha 410081,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-09-21 Published:2007-09-21
  • Contact: CHEN Xing-yu

摘要: 在目前求解TSP问题效果最好的混合算法——最大最小蚂蚁算法和3-opt局部搜索算法的基础上,提出了一种改进的混合蚂蚁算法。算法前期使用局部搜索的解初始化信息素矩阵,加快收敛速度,后期依Metropolis接受准则概率接受局部优化解,有效地避免陷入局部最优,自适应的信息素调节机制使算法更加灵活,而K近邻候选集则使之适应大规模问题求解,理论分析和TSPLIB中部分实例仿真结果表明,此算法能比其他改进蚁群算法具有更多优越性。

关键词: 最大最小蚂蚁算法, 3-opt局部搜索优化, 自适应调节, K近邻候选集, 旅行商问题

Abstract: This paper presents IHAS,an improved hybrid algorithm combines Max-Min Ant System(MMAS) with a local search strategy.IHAS also uses adaptive pheromone trail information,neighbourhood candidate list and Metropolis rules to instruct solutions,which can speed up convergence,avoid local optimization and solve scalable instances.Theory analysis and experimental result show that IHAS outperforms other hybrid ant colony algorithms due to its ability to find the satisfactory results effectively when applied to the Traveling Salesman Problem.

Key words: Max-Min Ant System(MMAS), 3-opt local search optimization, adaptive adjustment, K neighbours candidate list, Traveling Salesman Problem(TSP)