计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (26): 68-71.
• 学术探讨 • 上一篇 下一篇
魏 平,熊伟清,江宝钏
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
WEI Ping,XIONG Wei-qing,JIANG Bao-chuan
Received:
Revised:
Online:
Published:
Contact:
摘要: 提出了一种基于二元蚁群算法的多层前馈神经网络,同时为了避免二元蚁群算法陷入局部最优引入了拥挤交通组织策略。将二元蚁群算法和神经网络混合,可兼有神经网络广泛映射能力和二元蚁群算法快速全局收敛能力,通过在函数逼近实验表明取得了较好的结果。
关键词: 二元蚁群算法, 前馈神经网络, 拥挤交通组织, 反向传播算法, 函数逼近
Abstract: Multi-layer feedforward neural network based on binary ant colony algorithms is designed.At the same time the crowded traffic organization tactics is introduced to avoid the convergence to the local minimum points.The combination of binary colony algorithms with the neural network can have both extensive mapping ability of neural network and rapid global convergence ability of binary ant colony algorithms.The result shows better by the example of function approaching.
Key words: binary ant colony algorithms, feedforward neural network, crowded traffic organization tactics, back-propagation, function approaching
魏 平,熊伟清,江宝钏. 基于二元蚁群算法的多层前馈神经网络[J]. 计算机工程与应用, 2007, 43(26): 68-71.
WEI Ping,XIONG Wei-qing,JIANG Bao-chuan. Multi-layer feedforward neural network based on binary ant colony algorithms[J]. Computer Engineering and Applications, 2007, 43(26): 68-71.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I26/68