计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (24): 69-71.
• 学术探讨 • 上一篇 下一篇
黄冬民
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
HUANG Dong-min
Received:
Revised:
Online:
Published:
Contact:
摘要: 提出了一种利用比例无轨迹卡尔曼滤波(Scaled-UKF)进行神经网络权值估计的算法,该算法可以克服BP算法存在的学习速率缓慢、计算量大、容易使学习陷入局部极小等缺点。以Mackey-Grass混沌时间序列作为神经网络输入,运用比例UKF算法、UKF算法、BP算法仿真神经网络。结果表明,比例UKF算法较之BP算法具有更快的训练速度和更高的预测精度,且可以避免网络学习陷入局部极小;而相对于UKF算法,其变量分布可不限定为高斯型且能保证状态方差半正定。
关键词: 比例UKF, 神经网络, Mackey-Grass, 预测
Abstract: One algorithm based on the Scaled Unscented Kalman Filter(Scaled-UKF) is proposed to estimate the weights of the neural network,which can overcome the BP algorithm’s weaknesses of slow learning speed,large computational complexity,and easy convergence to the local minimum points.Taking the Mackey-Grass chaos time sequences as its input,the neural network is simulated with the Scaled-UKF,UKF and BP algorithm.The result of the simulation indicates that the Scaled-UKF algorithm has the faster training speed and higher forecast precision than the BP algorithm,and may avoid the network’s convergence to the local minimum points.Comparing with the UKF algorithm,the Scaled-UKF algorithm can guarantee positive semi-definiteness of the state covariance and its variable distribution may not be Gaussian-distributed.
Key words: Scaled Unscented Kalman Filter(Scaled-UKF), neural network, Mackey-Grass, forecast
黄冬民. 基于比例UKF的神经网络及其应用[J]. 计算机工程与应用, 2007, 43(24): 69-71.
HUANG Dong-min. Neural network and its application based on the Scaled Unscented Kalman Filter(Scaled-UKF)[J]. Computer Engineering and Applications, 2007, 43(24): 69-71.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I24/69