计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (24): 55-58.

• 学术探讨 • 上一篇    下一篇

代数曲线的分段有理二次B样条插值

胡 斌,梁锡坤   

  1. 杭州师范学院 信息工程学院,杭州 310018
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-08-21 发布日期:2007-08-21
  • 通讯作者: 胡 斌

Segment rational quadratic B-spline interpolation to algebraic curves

HU Bin,LIANG Xi-kun   

  1. School of Information and Engineering,Hangzhou Teachers College,Hangzhou 310018,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-08-21 Published:2007-08-21
  • Contact: HU Bin

摘要: 通过对代数曲线的合理分割,定义了曲线段的三角形凸包。给出了由三角形凸包确定控制多边形的方案。重点讨论了代数曲线参数化的分段有理二次B样条插值算法。插值曲线保持了原始曲线的一些重要几何性质,如单调性、凹凸性、G1连续性。数值实验验证了算法的有效性。

关键词: 曲线分割, 三角形凸包, 有理二次B样条, 插值算法

Abstract: Based on the proper segmentation of algebraic curve,the triangle convex hull of the curve segment is given.A scheme of control polygon determination by the triangle convex hull is provided.The algorithm of segment rational quadratic B-spline interpolation to algebraic curve is discussed in details.The segment interpolation keeps some important geometric features of the original curve such as convexity,monotonicity and G1 continuity.The numerical experiments show that the algorithm provided an efficient approach to approximate parameterization of algebraic curves.

Key words: curve segmentation, triangle convex hull, rational quadratic B-spline, interpolation algorithm