计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (23): 208-210.

• 工程与应用 • 上一篇    下一篇

基于LS-SVM的测井物性参数的预测方法

陈 华,邓少贵,范宜仁   

  1. 中国石油大学(华东),山东 东营 257061
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-08-11 发布日期:2007-08-11
  • 通讯作者: 陈 华

Forecast method of logging physical property parameters based on LS-SVM

CHEN Hua,DENG Shao-gui,FAN Yi-ren   

  1. University of Petroleum China,Dongying,Shandong 257061,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-08-11 Published:2007-08-11
  • Contact: CHEN Hua

摘要: 支持向量机(SVM)是近年来发展起来的一种通用的机器学习方法,在小样本数据的拟合中已获得了很好的效果。采用新型的支持向量机——最小二乘支持向量机(LS-SVM)对孔隙度、渗透率和饱和度进行了预测,获得了满意的结果。该方法易于使用,很少受不确定性因素的影响,并具有较强的信息整合能力以及更高的预测准确性。

关键词: 最小二乘支持向量回归机, 孔隙度, 渗透率, 饱和度, 预测

Abstract: Support Vector Machine(SVM) is a general machine learning method in recent years,by which good results have been obtained in fitting of small samples.Using new Support Vector Machine—Least Square Support Vector Machine(LS-SVM) to predict porosity,permeability,saturation is satisfied.The method is prone to use,it is seldom affected by uncertain factor and has powerful conformity skill of information and higher veracity in forecast.

Key words: Least Square Support Vector Regression, porosity, permeability, saturation, forecast