计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (2): 108-108.

• 学术探讨 • 上一篇    下一篇

基于Pareto最优和限制精英的多目标进化算法

杨善学,王宇平   

  1. 西安电子科技大学理学院应用数学系
  • 收稿日期:2006-05-15 修回日期:1900-01-01 出版日期:2007-01-11 发布日期:2007-01-11
  • 通讯作者: 杨善学 shxyang

A Multiobjective Evolutionary Algorithm Based On Pareto Optimality and Limited Elitist

,   

  1. 西安电子科技大学理学院应用数学系
  • Received:2006-05-15 Revised:1900-01-01 Online:2007-01-11 Published:2007-01-11

摘要: 在NSGA-II算法的基础上,本文提出了一种基Pareto最优和限制精英的多目标进化算法(LEMOEA)。通过分布函数的引入,限制了精英选取的数量,从而更好地维护了种群多样性。同时给出了一种新的单点复合交叉算子,其不但增大了解的搜索区域,而且增强了算法对解的搜索能力。实验结果表明: LEMOEA比NSGA-II有更好的收敛效果和种群多样性。

关键词: 多目标进化算法, NSGA-II, 分布函数, 单点复合交叉算子

Abstract: In this paper, a multiobjective evolutionary algorithm based on Pareto optimality and limited elitist (LEMOEA) is proposed which is based on NSGA-II. It uses distribution function to limit the number of individuals chosen by elitist scheme, and a good diversity of solutions can be kept. Moreover, the single-compound crossover operator increases the extent and the ability of search.. experimental results show that LEMOEA has faster convergent speed and better diversity of solutions than NSGA-II.

Key words: MOEA, NSGA-II, distribution function, single-compound crossover operator