计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (19): 32-34.

• 学术探讨 • 上一篇    下一篇

二元数值积分的计算方法

陈付龙1,2   

  1. 1.西北工业大学 计算机学院,西安 710072
    2.安徽师范大学 计算机系,安徽 芜湖 241000
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-07-01 发布日期:2007-07-01
  • 通讯作者: 陈付龙

Two-dimensional numerical value integral’s computing method

CHEN Fu-long1,2   

  1. 1.College of Computer,Northwestern Polytechnical University,Xi’an 710072,China
    2.Department of Computer,Anhui Normal University,Wuhu,Anhui 241000,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-07-01 Published:2007-07-01
  • Contact: CHEN Fu-long

摘要: 讨论了二元数值积分的牛顿-柯特斯计算方法,并给出了计算的部分C语言代码,经过分析,该方法的时间复杂度为(m+1)•(n+1)•M•N。推而广之,该方法同样适用于多元数值积分的计算。

Abstract: The Newton-Cotes method about how to compute two-dimensional numerical value integral is discussed.The author also offers its partial codes of computing program written in C language.He analyses the method and gets the conclusion that its time complexity is (m+1)•(n+1)•M•N.The method can also apply to multi-dimensional numerical value integral computing.