计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (17): 241-244.
张 剑1,2,谈国新2,宋婉娟1
ZHANG Jian1,2,TAN Guo-xin2,SONG Wan-juan1
摘要: 分析了模糊集理论运用于人脸检测的可行性,采用Haar矩形特征和隶属度函数对样本集进行训练,运用特征集的熵和AdaBoost算法选取适当的弱分类器,并构建了分发型人脸检测器。检测时,对于不像人脸的子窗口通过靠前的结构简单的强分类器快速将其淘汰掉;对于像人脸的子窗口,根据其与人脸的相似程度,由分发器动态地选择后面的强分类器进行判定。在MIT+CMU的正面人脸图片集中进行了测试,实验结果表明,此检测器在检测性能降低不大的情况下,可以有效地提高检测效率。