计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (14): 52-55.
• 学术探讨 • 上一篇 下一篇
王强 陈英武 邢立宁
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 为提高支持向量回归算法的学习能力和泛化性能,提出了特征选择和支持向量回归参数的联合优化方法。联合优化方法采用主成分分析产生新的特征集,以方均误差为目标计算回归精度,并应用实数编码的免疫遗传算法求解此优化问题。仿真实验结果表明,联合优化的回归精度要优于单独优化特征和支持向量回归参数,而且优化速度更快。
Abstract: In order to improve support vector regression (SVR) learning ability and generalization performance, a joint optimization method for selecting features and SVR parameters is proposed. By using the method, a new set of uncorrelated features is obtained by using principal component analysis , the mean squared error(MSE) is taken into account for the accuracy evaluation of SVR, and a real-coding based immune genetic algorithm is employed to solve the joint optimization problem. Simulation experiments show that the joint optimization method guarantees better regression accuracy and the optimization process has a higher rate than the single optimization of features or SVR parameters.
王强 陈英武 邢立宁. 特征选择和支持向量回归参数的联合优化[J]. 计算机工程与应用, 2007, 43(14): 52-55.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I14/52