计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (10): 96-98.

• 学术探讨 • 上一篇    下一篇

遗传算法和蚁群算法在求解TSP问题上的对比分析

蔡光跃 董恩清   

  1. 苏州大学电子信息学院 苏州大学电子信息学院
  • 收稿日期:2006-04-14 修回日期:1900-01-01 出版日期:2007-04-01 发布日期:2007-04-01
  • 通讯作者: 蔡光跃

Comparison and Analysis of Generation Algorithm and Ant Colony Optimization on TSP

  • Received:2006-04-14 Revised:1900-01-01 Online:2007-04-01 Published:2007-04-01

摘要: 遗传算法(Generation Algorithm, GA)和蚁群算法(Ant Colony Optimization, ACO)都是解决组合优化问题的强有力算法。特别是近几年的研究表明,蚁群算法具有极强的鲁棒性和求最优解的能力。本文在分析这两种算法的特点基础上,通过实例验证它们在解决TSP问题上各自的优缺点,并给出做进一步研究的建议。

Abstract: GA (Generation Algorithm) and ACO (Ant Colony Optimization) are two powerful and effective algorithms for solving the combination optimization problems. Recent researches indicate that ACO has high robustness and better ability for searching optimal results. On the base of analysis regarding the two algorithms, their advantages and disadvantages are given by means of large numbers of experiments respectively. Some future research suggestions are provided.