计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (10): 55-57.

• 学术探讨 • 上一篇    下一篇

一种结合训练样本筛选的SVM图像分割方法

薛志东 王燕 隋卫平   

  1. 华中科技大学软件学院
  • 收稿日期:2006-08-21 修回日期:1900-01-01 出版日期:2007-04-01 发布日期:2007-04-01
  • 通讯作者: 薛志东

A SVM-based Segmentation Method with Filtration of Training Samples

zhidong Xu Yan Wang Weiping Sui   

  • Received:2006-08-21 Revised:1900-01-01 Online:2007-04-01 Published:2007-04-01
  • Contact: zhidong Xu

摘要: 基于支持向量的图像分割方法一般使用交互方式获取的训练样本,不可避免的在训练样本中引入歧义样本。这些歧义样本严重影响了基于支持向量机图像分割方法的性能。本文提出一种先对训练样本进行筛选,再进行分类(分割)的支持向量图像分割方法;并给出了一种基于支持向量机的样本筛选方法,可有效的降低歧义样本的影响。实验表明,经样本筛选的SVM分割方法有更好的分割性能。

关键词: 支持向量机, 样本筛选, 图像分割

Abstract: The mistaking samples gotten by the interactive way greatly decrease the performance of the SVM-based segmentation method. In this paper, a segmentation method based on a 2 level SVM was proposed to reduce the negative effects of the mistaking samples. The first level SVM filtered out the mistaking samples, and the second level SVM segmented the images. A SVM-based filtration method was also adopted. The experiments illustrated that the proposed method could get better result.

Key words: Support Vector Machines, Sample filtration, Image segmentation