计算机工程与应用 ›› 2006, Vol. 42 ›› Issue (25): 19-.

• 博士论坛 • 上一篇    

基于支持向量机的渐近式半监督式学习算法

钟清流,蔡自兴   

  1. 湖南大学计算机与通信学院
  • 收稿日期:2006-06-19 修回日期:1900-01-01 出版日期:2006-09-01 发布日期:2006-09-01
  • 通讯作者: 钟清流 zqlllj

Semi-Supervised Learning Algorithm Based on SVM and by Gradual Approach

,ZiXing Cai   

  1. 湖南大学计算机与通信学院
  • Received:2006-06-19 Revised:1900-01-01 Online:2006-09-01 Published:2006-09-01

摘要: 提出一种基于支持向量机的渐近式半监督式学习算法,它以少量的有标记数据来训练初始学习器,通过选择性取样规则和核参数来调节无标记样本的选择范围和控制学习器决策面的动态调节方向,并通过删除非支持向量来降低学习代价.仿真实验表明,只要能够选择适当的选择性取样的阈值和核参数,这种学习算法能够以较少的学习代价获得较好的学习效果.

关键词: 支持向量机, 半监督式学习, 算法.

Abstract: A Semi-supervised Learning algorithm Based on Support Vector Machine and by gradual approach has been put forward ,which train early Learner by a spot of labeled-data , adjust the scope selected unlabeled-data and control the direction adjusting the decision-function of the learner by means of a rule Selective-sampling and kernel parameter and reduce learning cost by deleting non-supportvector. Simulative experiments have shown that the algorithm may get good learning effect at less learning cost if only opportune threshold for selective sampling and kernel parameter are selected.

Key words: Support vector machine, semi-supervised Learning, algorithm.