计算机工程与应用 ›› 2006, Vol. 42 ›› Issue (11): 24-.

• 博士论坛 • 上一篇    

基于粗糙集相容关系的图像聚类分割

张东波,王耀南   

  1. 湘潭大学
  • 收稿日期:2005-11-30 修回日期:1900-01-01 出版日期:2006-04-11 发布日期:2006-04-11
  • 通讯作者: 张东波 zhadonbo

Image Segmentation Based on Clustering and Rough Tolerant Relation

,   

  1. 湘潭大学
  • Received:2005-11-30 Revised:1900-01-01 Online:2006-04-11 Published:2006-04-11

摘要: 通过基于粗糙集相容关系的划分,介绍了一种新的图像聚类分割方法,首先,以不同聚类数情况下FCM的分割结果为依据构建信息表,在合并重复行后,图像被分成多个对象区域,然后,通过值约简获得各属性权值并以此为依据,计算各对象之间的差异度,进而通过差异度定义 相容关系,最后由 相容关系对对象论域进行划分,完成图像分割。该方法在人工生成图像和大脑MRI图像的分割中得到验证,实验结果表明,本文方法比FCM方法具有更好的分割准确性,对模糊边界区域的分割效果较好。

Abstract: A new image clustering segmentation method is proposed by the partition of rough tolerant relations. First, using FCM clustering results with different cluster numbers, an information table can be constructed and the image will be divided into many object regions. Secondly, by applying ‘value reduct’ , the weights of the attributes can be acquired and the dissimilarities between objects are calculated. Then tolerant relations can be defined based on dissimilarities between regions. Finally, tolerant relations partition the objects and accomplish the segmentation of the image. The method was applied to an artificial generated image and a human brain MRI image. The results of the experiment indicate that the method proposed here has better segmentation veracity than FCM method and has well performance for vague boundary region segmentation.