[1] 20 Amazing video consumption trends to watch out for (2024)[EB/OL]. (2024-08-29)[2025-07-17]. https://vidico.com/news/video-consumptiontrends.com.
[2] SMITH A K, BOLTON R N. The effect of customers’ emotional responses to service failures on their recovery effort evaluations and satisfaction judgments[J]. Journal of the Academy of Marketing Science, 2002, 30(1): 5-23.
[3] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1103-1114.
[4] TSAI Y H, BAI S J, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 6558-6569.
[5] HAZARIKA D, ZIMMERMANN R, PORIA S. MISA: modality-invariant and-specific representations for multimodal sentiment analysis[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1122-1131.
[6] YU W M, XU H, YUAN Z Q, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 10790-10797.
[7] RAHMAN W, HASAN M K, LEE S W, et al. Integrating multimodal information in large pretrained Transformers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 2359-2369.
[8] ZADEH A, ZELLERS R, PINCUS E, et al. Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages[J]. IEEE Intelligent Systems, 2016, 31(6): 82-88.
[9] ZADEH A B, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2236-2246.
[10] YU W M, XU H, MENG F Y, et al. CH-SIMS: a Chinese multimodal sentiment analysis dataset with fine-grained annotation of modality[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3718-3727.
[11] GUPTA A, JAISWAL R, ADHIKARI S, et al. DAISEE: dataset for affective states in E-learning environments[J]. arXiv:1609.01885, 2016.
[12] YANG F. SCB-Dataset: a dataset for detecting student and teacher classroom behavior[J]. arXiv:2304.02488, 2023.
[13] ZHANG H Y, WANG Y, YIN G H, et al. Learning language-guided adaptive hyper-modality representation for multimodal sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 756-767.
[14] GUO Z R, JIN T, ZHAO Z. Multimodal prompt learning with missing modalities for sentiment analysis and emotion recognition[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2024: 1726-1736.
[15] PANG B, LEE L, VAITHYANATHAN S. Sentiment classification using machine learning techniques[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Philadelphia, USA: Association for Computational Linguistics, 2002: 79-86.
[16] MAAS A L, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011: 142-150.
[17] LEE S. Sentiment analysis system using stanford sentiment treebank[J]. Journal of the Korean Society of Marine Engineering, 2015, 39(3): 274-279.
[18] LIVINGSTONE S?R, RUSSO F?A. RAVDESS: The Ryerson audio?visual database of emotional speech and song (RAVDESS): a dynamic, multimodal set of facial and vocal expressions in north American English[J]. PLoS One, 2018, 13(5): e0196391.
[19] BURKHARDT F, PAESCHKE A, ROLFES M, et al. A database of German emotional speech[C]//Proceedings of the 9th European Conference on Speech Communication and Technology, 2005.
[20] MORENCY L P, MIHALCEA R, DOSHI P. Towards multimodal sentiment analysis[C]//Proceedings of the 13th International Conference on Multimodal Interfaces, 2011: 169-176.
[21] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2247-2256.
[22] PORIA S, CAMBRIA E, HAZARIKA D, et al. Memory fusion network for multi-view sequential learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI Press, 2017: 5634-5640.
[23] HU X J, WANG X L, ZHAO J B, et al. UniMSE: unified multimodal sentiment explainer for interpretable sentiment analysis[C]//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa, Portugal: ACM, 2022: 3117-3126.
[24] JORDAN P J, THOMPSON B M. Measuring user satisfaction: a framework for understanding and improving user experience[J]. International Journal of Human-Computer Studies, 2013, 71(3): 230-245.
[25] FORNELL C. A national customer satisfaction barometer: the Swedish experience[J]. Journal of Marketing, 1992, 56(1): 6-21.
[26] HU M Q, LIU B. Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004: 168-177.
[27] MAIRESSE F, WALKER M A, MEHL M R, et al. Using linguistic cues for the automatic recognition of personality in conversation and text[J]. Journal of Artificial Intelligence Research, 2007, 30: 457-500.
[28] SOCHER R, PERELYGIN A, WU J, et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1631-1642.
[29] HAZARIKA D, PORIA S, ZIMMERMANN R, et al. Multi-attention recurrent network for human communication comprehension[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics, 2019: 3020-3030.
[30] GONG Y, LIU J, ZHANG F, et al. Multimodal cyclic translation network for visual and speech emotion recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 10286-10295.
[31] DU W C, CHEN S B, ZHANG X M, et al. Hierarchical feature fusion network for multimodal sentiment analysis[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, WA, USA: ACM, 2020: 2232-2240.
[32] ZHANG H, WANG W, YU T. Towards robust multimodal sentiment analysis with incomplete data[C]//Advances in Neural Information Processing Systems, 2024: 55943-55974.
[33] SUN L C, LIAN Z, LIU B, et al. Efficient multimodal transformer with dual-level feature restoration for robust multimodal sentiment analysis[J]. IEEE Transactions on Affective Computing, 2024, 15(1): 309-325. |