[1] 武文亮, 周兴社, 沈博, 等. 集群机器人系统特性评价研究综述[J]. 自动化学报, 2022, 48(5): 1153-1172.
WU W L, ZHOU X D, SHEN B, et al. A review of swarm robotic systems property evaluation research[J]. Acta Automatica Sinica, 2022, 48(5): 1153-1172.
[2] 孙彧, 曹雷, 陈希亮, 等. 多智能体深度强化学习研究综述[J]. 计算机工程与应用, 2020, 56(5): 13-24.
SUN Y, CAO L, CHEN X L, et al. Overview of multi-agent deep reinforcement learning[J]. Computer Engineering and Applications, 2020, 56(5): 13-24.
[3] YE D Y, ZHANG M J, ATHANASIOS V, et al. A survey of self-organization mechanisms in multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(3): 441-461.
[4] 陆军, 王飞跃, 董琦, 等. 多智能体系统的体系化和组织化博弈[J]. Frontiers of Information Technology Electronic Engineering, 2022, 23(7): 991-997.
LU J, WANG F Y, DONG Q, et al. Institutionalized and systematized gaming for multi-agent systems[J]. Frontiers of Information Technology Electronic Engineering, 2022, 23(7): 991-997.
[5] NIU H Y, WEI J M, CHEN Y Q. Optimal randomness for stochastic configuration network (SCN) with heavy-tailed distributions[J]. Entropy, 2021, 23(1): 56.
[6] BRUST M R, STRIMBU B M. A networked swarm model for UAV deployment in the assessment of forest environments[C]//Proceedings of the IEEE 10th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2015: 1-6.
[7] WEI Z C, LIU F, YU Z W, et al. Reinforcement learning for a novel mobile charging strategy in wireless rechargeable sensor networks[C]//Proceedings of the 13th International Conference on Wireless Algorithms, Systems, and Applications, 2018: 485-496.
[8] CAO X, XU W, LIU X, et al. A deep reinforcement learning-based on-demand charging algorithm for wireless rechargeable sensor networks[J]. Ad Hoc Networks, 2021, 110: 102278.
[9] XU W Z, LIANG W F, LIN X, et al. Efficient scheduling of multiple mobile chargers for wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7670-7683.
[10] WANG K, WANG L, LIN C, et al. Prolonging lifetime for wireless rechargeable sensor networks through sleeping and charging scheduling[J]. International Journal of Communication Systems, 2020, 33(8): e4355.
[11] HAN G J, GUAN H F, WU J W, et al. An uneven cluster-based mobile charging algorithm for wireless rechargeable sensor networks[J]. IEEE Systems Journal, 2019, 13(4): 3747-3758.
[12] SONI S, SHRIVASTAVA M. Novel wireless charging algorithms to charge mobile wireless sensor network by using reinforcement learning[J]. SN Applied Sciences, 2019, 1(9): 1052.
[13] XU L, CHEN N C, CEHN Z Q, et al. Spatiotemporal forecasting in earth system science: methods, uncertainties, predictability and future directions[J]. Earth-Science Reviews 2021, 222: 103828.
[14] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226.
TIAN W, YANG F, YIN J N, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226.
[15] RAY D, VOHRA R. Coalition formation[J]. Handbook of Game Theory with Economic Applications, 2015, 4: 239-326.
[16] WI H, OH S, MUN J, et al. A team formation model based on knowledge and collaboration[J]. Expert Systems with Applications, 2009, 36(5): 9121-9134.
[17] INIGUEZ G, KERTESZ J, KASKI K K, et al. Opinion and community formation in coevolving networks[J]. Physical Review E, 2009, 80(6): 066119.
[18] DULAC-ARNOLD G, LEVINE N, MANKOWITZ D J, et al. Challenges of real-world reinforcement learning: definitions, benchmarks and analysis[J]. Machine Learning, 2021, 110(9): 2419-2468.
[19] 张婷婷, 宋爱国, 蓝羽石. 集群无人系统自适应结构建模与预测[J]. 中国科学: 信息科学, 2020, 50(3): 347-362.
ZHANG T T, SONG A G, LAN Y S. Adaptive structure modeling and prediction for swarm unmanned system[J]. SCIENTIA SINICA Informationis, 2020, 50(3): 347-362.
[20] ZENG X, PENG H, LI A. Effective and stable role-based multi-agent collaboration by structural information principles[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 11772-11780.
[21] LIU Z J, ZHANG Y Z, LI P, et al. Dynamic LLM-agent network: an LLM-agent collaboration framework with agent team optimization[J]. arXiv:2310.02170, 2023.
[22] HONG S, ZHENG X, CHEN J, et al. MetaGPT: meta programming for multi-agent collaborative framework[J]. arXiv: 2308.00352, 2023.
[23] CHEN W, SU Y, ZUO J, et al. AgentVerse: facilitating multi-agent collaboration and exploring emergent behaviors in agents[J]. arXiv:2308.10848 , 2023.
[24] CHEN G, DONG S, SHU Y, et al. AutoAgents: a framework for automatic agent generation[J]. arXiv:2309.17288, 2023. |