计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 176-184.DOI: 10.3778/j.issn.1002-8331.2409-0393

• 理论与研发 • 上一篇    下一篇

面向时空资源分配的智能集群自组织预测方法

王宏为,刘玮,郭靠,王紫昊   

  1. 武汉工程大学 计算机科学与工程学院 湖北省智能机器人重点实验室,武汉 430205
  • 出版日期:2025-07-15 发布日期:2025-07-15

Intelligent Cluster Self-Organization Prediction Methods for Spatiotemporal Resource Allocation

WANG Hongwei, LIU Wei, GUO Kao, WANG Zihao   

  1. Hubei Key Laboratory of Intelligent Robot, School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 在智能集群系统中由于动态环境和不完全信息的影响,资源的需求和供应会不断变化,需要实时调整资源分配策略。针对智能集群在不确定或有限信息下的动态资源分配问题,提出了一种面向时空资源分配的智能集群自组织预测方法。引入时空多智能体强化学习(STMARL)框架,通过深度Q网络(DQN)和长短期记忆单元(LSTM)对时空依赖性进行建模,分析智能集群在空间和时间上的动态行为和交互关系,进而使用一种基于信任模型的复合自组织Q-learning算法,使智能体在选择合作伙伴时能够利用自己的经验和其他智能体的意见。Q-learning算法使智能体能够独立评估适应关系的奖励,旨在提高系统的通信协调能力和动态环境适应能力以实现资源的合理分配。在无人电动汽车充电实验场景中,充电桩作为智能体,自组织充电调度在家庭和公共充电模式下,总负荷范围缩减幅度最高可达90.37%和49.33%,使总峰谷负荷差最小,有助于提高微电网的安全性和可靠性。

关键词: 时空建模, 多智能体, 自组织, 智能集群, 无人电动汽车充电场景

Abstract: In intelligent cluster systems, due to the impact of dynamic environments and incomplete information, the demand and supply of resources constantly change, requiring real-time adjustment of resource allocation strategies. To address the dynamic resource allocation problem of intelligent clusters under uncertain or limited information, a self-organizing prediction method for intelligent clusters oriented towards spatiotemporal resource allocation is proposed. This method introduces the spatio-temporal multi-agent reinforcement learning (STMARL) framework, which models spatio-temporal dependencies through deep Q-network (DQN) and long short-term memory unit (LSTM), analyzes the dynamic behavior and interaction relationships of intelligent clusters in space and time, and then uses a composite self-organizing Q-learning algorithm based on a trust model to enable agents to leverage their own experience and the opinions of other agents when selecting partners. The Q-learning algorithm enables the agent to independently evaluate the rewards associated with adaptation, aiming to improve the system’s communication coordination capabilities and dynamic environmental adaptability to achieve rational resource allocation. In the experimental scenario of unmanned electric vehicle charging, the charging pile, as an agent, can reduce the total load range by up to 90.37% and 49.33% in the home and public charging modes through self-organized charging scheduling, minimizing the total peak-valley load difference and helping to improve the safety and reliability of the microgrid.

Key words: spatiotemporal modeling, multi-agent, self-organization, intelligent clusters, unmanned electric vehicle charging scenario