[1] FU Y, CAO H R, CHEN X F, et al. Task-incremental broad lea-rning system for multi-component intelligent fault diagnosis of machinery[J]. Knowledge-Based Systems, 2022, 246: 108730.
[2] ZHANG K Y, CHEN J L, HE S L, et al. Differentiable neural architecture search augmented with pruning and multi-objective optimization for time-efficient intelligent fault diagnosis of machinery[J]. Mechanical Systems and Signal Processing, 2021, 158: 107773.
[3] 那峙雄, 孙涛, 来广志, 等. 多尺度特征融合的光伏电站故障诊断[J]. 计算机工程与应用, 2022, 58(10): 300-308.
NA Z X, SUN T, LAI G Z, et al. Fault diagnosis for photovoltaic power station by multi-scale features fusion[J]. Computer Engineering and Applications, 2022, 58(10): 300-308.
[4] ZHAO X L, JIA M P. A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery[J]. Structural Health Monitoring, 2020, 19(6): 1745-1763.
[5] 李莎莎, 石颉. 面向感应电机故障诊断的深度学习方法研究[J]. 计算机工程与应用, 2024, 60(14): 329-336.
LI S S, SHI J. Research on deep learning method for induction motor fault diagnosis[J]. Computer Engineering and Applications, 2024, 60(14): 329-336.
[6] 史丽晨, 张鹏, 王海涛, 等. 基于GASF与MSCAM-DenseNet的小样本齿轮故障诊断方法[J]. 计算机集成制造系统, 2025, 31(8): 3033-3045.
SHI L C, ZHANG P, WANG H T, et al. Small-sample gear fault diagnosis method based on GASF and MSCAM-DenseNet[J]. Computer Integrated Manufacturing Systems, 2025, 31(8): 3033-3045.
[7] 周玉蓉, 张巧灵, 于广增, 等. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63.
ZHOU Y R, ZHANG Q L, YU G Z, et al. Review of acoustic signal-based industrial equipment fault diagnosis[J]. Computer Engineering and Applications, 2023, 59(7): 51-63.
[8] HUANG D R, KE L Y, MI B, et al. A new incipient fault diagnosis method combining improved RLS and LMD algorithm for rolling bearings with strong background noise[J]. IEEE Access, 2018, 6: 26001-26010.
[9] PENG Z K, TSE P W, CHU F L. A comparison study of imp-roved Hilbert Huang transform and wavelet transform: application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing, 2005, 19(5): 974-988.
[10] SHANG X Q, HUANG T L, CHEN H P, et al. Recursive variational mode decomposition enhanced by orthogonalization algorithm for accurate structural modal identification[J]. Mechanical Systems and Signal Processing, 2023, 197: 110358.
[11] XI C P, LIU R Q. Detection of small floating target on sea surface based on gramian angular field and improved EfficientNet[J]. Remote Sensing, 2022, 14(17): 4364.
[12] NASCIMENTO E G S, DE MELO T A C, MOREIRA D M. A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy[J]. Energy, 2023, 278: 127678.
[13] HE K C, XU Y W, WANG Y, et al. Intelligent diagnosis of rolling bearings fault based on multisignal fusion and MTF-ResNet[J]. Sensors, 2023, 23(14): 6281.
[14] STEFENON S F, SEMAN L O, AQUINO L S, et al. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants[J]. Energy, 2023, 274: 127350.
[15] GONG Q Y, PENG K, GAO Q, et al. Series arc fault identification method based on wavelet transform and feature values decomposition fusion DNN[J]. Electric Power Systems Research, 2023, 221: 109391.
[16] CAI Y Y, YAO Z K, CHENG X, et al. Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 303: 123085.
[17] XIONG L J, HE M, HU C, et al. Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN[J]. Sensors and Actuators B: Chemical, 2023, 395: 134492.
[18] CHANG M, YAO D C, YANG J W. Intelligent fault diagnosis of rolling bearings using efficient and lightweight ResNet networks based on an attention mechanism (September 2022)[J]. IEEE Sensors Journal, 2023, 23(9): 9136-9145.
[19] YIN X L, MOU Z L, WANG Y Q. Fault diagnosis of wind turbine gearbox based on multiscale residual features and ECA-stacked ResNet[J]. IEEE Sensors Journal, 2023, 23(7): 7320-7333.
[20] 万昕, 刘坤, 崔昌浩. 一种基于Sobel梯度的直方图均衡算法及其在红外图像上的应用[J]. 红外技术, 2024, 46(4): 452-459.
WAN X, LIU K, CUI C H. Histogram equalization algorithm based on sobel gradient and its application on infrared images[J]. Infrared Technology, 2024, 46(4): 452-459.
[21] 徐剑, 丁晓青, 王生进, 等. 一种融合局部纹理和颜色信息的背景减除方法[J]. 自动化学报, 2009, 35(9): 1145-1150.
XU J, DING X Q, WANG S J, et al. Background subtraction based on a combination of local texture and color[J]. Acta Automatica Sinica, 2009, 35(9): 1145-1150.
[22] 卫少萌, 张江民, 石慧, 等. 融合多传感器数据的系统相对密度高维核估计剩余寿命预测[J]. 计算机集成制造系统, 2024, 30(12): 4493-4507.
WEI S M, ZHANG J M, SHI H, et al. Remaining useful life prediction of relative density high-dimensional kernel estimation for systems based on multi-sensor data fusion[J]. Computer Integrated Manufacturing Systems, 2024, 30(12): 4493-4507.
[23] 苏兆婧, 余隋怀, 初建杰, 等. 面向云服务平台的产品感性评价及标注模型[J]. 计算机集成制造系统, 2021, 27(3): 868-877.
SU Z J, YU S H, CHU J J, et al. Evaluation and annotation model of product Kansei attributes on cloud service platform[J]. Computer Integrated Manufacturing Systems, 2021, 27(3): 868-877.
[24] 万鹏, 赵竣威, 朱明, 等. 基于改进Res Net50模型的大宗淡水鱼种类识别方法[J]. 农业工程学报, 2021, 37(12): 159-168.
WAN P, ZHAO J W, ZHU M, et al. Freshwater fish species identification method based on improved Res Net50 model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 159-168.
[25] 张宏鸣, 沈寅威, 阳光, 等. 融合注意力机制与多尺度信息的葡萄种植区变化检测[J]. 农业机械学报, 2024, 55(5): 196-206.
ZHANG H M, SHEN Y W, YANG G, et al. Change detection of grape growing areas based on integrating attention mechanism and multiscale information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(5): 196-206.
[26] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. arXiv: 2206. 02424, 2022.
[27] 刘祥, 田敏, 梁金艳. 基于RCH-UNet的新疆密植棉花图像快速分割及产量预测[J]. 农业工程学报, 2024, 40(7): 230-239.
LIU X, TIAN M, LIANG J Y. Prediction of cotton yield densely planted in Xinjiang of China using RCH-UNet model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(7): 230-239.
[28] DENG Y J, HOU Y L, YAN J T, et al. ELU-Net: an efficient and lightweight U-Net for medical image segmentation[J]. IEEE Access, 2022, 10: 35932-35941.
[29] DOU S Q, WANG L, FAN D L, et al. Classification of citrus huanglongbing degree based on CBAM-MobileNetV2 and transfer learning[J]. Sensors, 2023, 23(12): 5587.
[30] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[31] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596. |