[1] PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in quantum cryptography[J]. Advances in Optics and Photonics, 2020, 12(4): 1012-1236.
[2] KHUMALO M T, CHIEZA H A, PRAG K, et al. An investigation of IBM quantum computing device performance on combinatorial optimisation problems[J]. arXiv:2107.03638, 2021.
[3] CAVA R, LEON D N, XIE W. Introduction: quantum materials[J]. Chemical Reviews, 2021, 121(5): 2777-2779.
[4] WILLE R, VAN METER R, NAVEH Y. IBM’s Qiskit tool chain: working with and developing for real quantum computers[C]//Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition, 2019: 1234-1240.
[5] Google. Shor’s algorithm: Cirq. Google quantum AI[EB/OL]. [2024-02-18]. https://quantumai.google/cirq/experiments/shor.
[6] ItOKO T, RAYMOND R, IMAMICHI T, et al. Optimization of quantum circuit mapping using gate transformation and commutation[J]. Integration, 2020, 70: 43-50.
[7] LAO L, ALMUDEVER C G. Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits[J]. Physical Review A, 2020, 101(3): 32333.
[8] STEINBERG M A, FELD S, ALMUDEVER C G, et al. Topological-graph dependencies and scaling properties of a heuristic qubit-assignment algorithm[J]. IEEE Transactions on Quantum Engineering, 2022, 3: 1-14.
[9] PALER A, SASU L, FLOREA A C, et al. Machine learning optimization of quantum circuit layouts[J]. ACM Transactions on Quantum Computing, 2023, 4(2): 1-25.
[10] DAI S. On the quantum circuit implementation of modus ponens[J]. Scientific Reports, 2024, 14(1): 14245.
[11] SüNKEL L, MARTYNIUK D, MATTERN D, et al. GA4QCO: genetic algorithm for quantum circuit optimization[J]. arXiv:2302.01303, 2023.
[12] HE J, XU H, FENG S, et al. [Retracted] heuristic reordering strategy for quantum circuit mapping on LNN architectures[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 1765955.
[13] BAE J H, ALSING P M, AHN D, et al. Quantum circuit optimization using quantum Karnaugh map[J]. Scientific Reports, 2020, 10(1): 15651.
[14] AROCHE R R, GARCíA O Y M, MARTíNEZ A M A, et al. DNA as a perfect quantum computer based on the quantum physics principles[J]. Scientific Reports, 2024, 14(1): 11636.
[15] LI S, ZHOU X, FENG Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search[J]. IEEE Transactions on Computers, 2020, 70(11): 1777-1788.
[16] ZHU P, GUAN Z, CHENG X. A dynamic look-ahead heuristic for the qubit mapping problem of NISQ computers[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4721-4735.
[17] NIU S, SUAU A, STAFFELBACH G, et al. A hardware-aware heuristic for the qubit mapping problem in the NISQ era[J]. IEEE Transactions on Quantum Engineering, 2020, 1: 1-14.
[18] ZHOU X, LI S, FENG Y. Quantum circuit transformation based on simulated annealing and heuristic search[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4683-4694.
[19] LAO L, BROWNE D E. 2QAN: a quantum compiler for 2-local qubit hamiltonian simulation algorithms[C]//Proceedings of the 49th Annual International Symposium on Computer Architecture, 2022: 351-365.
[20] SIVARAJAH S, DILKES S, COWTAN A, et al. t|ket>: a retargetable compiler for NISQ devices[J]. Quantum Science and Technology, 2020, 6(1): 14003.
[21] JAVADI-ABHARI A, TREINISH M, KRSULICH K, et al. Quantum computing with Qiskit[J]. arXiv:2405.08810, 2024. |