
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 21-33.DOI: 10.3778/j.issn.1002-8331.2406-0268
任科兰,张明书,魏彬,闫法成,姜文
出版日期:2025-02-01
发布日期:2025-01-24
REN Kelan, ZHANG Mingshu, WEI Bin, YAN Facheng, JIANG Wen
Online:2025-02-01
Published:2025-01-24
摘要: 跨目标立场检测利用源目标知识对新目标进行检测,减少了对新目标标注数据的需求,相较于传统的立场检测,能更好地适应快速发展的网络文化。目前关于立场检测研究综述成果众多,但跨目标立场检测研究仍缺少系统的总结与分析。在回顾近年来的跨目标立场检测领域相关研究的基础上,介绍了跨目标立场检测的基本概念,并从知识转移的角度对跨目标立场检测的研究方法进行了归纳总结;探讨了所有选定研究中用于跨目标立场检测的数据集的特点和局限性。最后,对该任务未来的发展趋势和挑战进行了展望。
任科兰, 张明书, 魏彬, 闫法成, 姜文. 跨目标立场检测研究综述[J]. 计算机工程与应用, 2025, 61(3): 21-33.
REN Kelan, ZHANG Mingshu, WEI Bin, YAN Facheng, JIANG Wen. Cross-Target Stance Detection: Review of Research[J]. Computer Engineering and Applications, 2025, 61(3): 21-33.
| [1] KÜÇÜK D, CAN F. Stance detection[J]. ACM Computing Surveys, 2021, 53(1): 1-37. [2] KRATZWALD B, ILI? S, KRAUS M, et al. Deep learning for affective computing: text-based emotion recognition in decision support[J]. Decision Support Systems, 2018, 115: 24-35. [3] KUMAR A, NARAPAREDDY V T, ADITYA SRIKANTH V, et al. Sarcasm detection using multi-head attention based bidirectional LSTM[J]. IEEE Access, 2020, 8: 6388-6397. [4] BAI N, MENG F R, RUI X B, et al. A multi-task attention tree neural net for stance classification and rumor veracity detection[J]. Applied Intelligence, 2023, 53(9): 10715-10725. [5] STAB C, MILLER T, GUREVYCH I. Cross-topic argument mining from heterogeneous sources using attention-based neural networks[J]. arXiv:1802.05758, 2018. [6] COLETTO M, GARIMELLA K, GIONIS A, et al. Automatic controversy detection in social media: a content-independent motif-based approach[J]. Online Social Networks and Media, 2017, 3: 22-31. [7] RODRIGO-GINéS F J, CARRILLO-DE-ALBORNOZ J, PLAZA L. A systematic review on media bias detection: what is media bias, how it is expressed, and how to detect it[J]. Expert Systems with Applications, 2024, 237: 121641. [8] ALDAYEL A, MAGDY W. Stance detection on social media: state of the art and trends[J]. Information Processing & Management, 2021, 58(4): 102597. [9] GRIMMINGER L, KLINGER R. Hate towards the political opponent: a twitter corpus study of the 2020 US elections on the basis of offensive speech and stance detection[J]. arXiv:2103.01664, 2021. [10] MOHAMMAD S, KIRITCHENKO S, SOBHANI P, et al. SemEval-2016 task 6: detecting stance in tweets[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 31-41. [11] ALTURAYEIF N, LUQMAN H, AHMED M. A systematic review of machine learning techniques for stance detection and its applications[J]. Neural Computing & Applications, 2023, 35(7): 5113-5144. [12] VAMVAS J, SENNRICH R. X-stance: a multilingual multi-target dataset for stance detection[J]. arXiv:2003.08385, 2020. [13] 张文浩, 赖焌鸣, 邹佳霖, 等. 基于数据增强与对比学习的未知目标立场检测[J]. 广东石油化工学院学报, 2024, 34(1): 55-59. ZHANG W H, LAI J M, ZOU J L, et al. Unseen target stance detection based on data augmentation and contrastive learning[J]. Journal of Guangdong University of Petrochemical Technology, 2024, 34(1): 55-59. [14] 傅勇昊. 面向社交媒体文本的少样本立场检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. FU Y H. Research on position detection method for social media text with small samples[D]. Harbin: Harbin Institute of Technology, 2021. [15] AUGENSTEIN I, ROCKT?SCHEL T, VLACHOS A, et al. Stance detection with bidirectional conditional encoding[J]. arXiv:1606.05464, 2016. [16] XU C, PARIS C, NEPAL S, et al. Cross-target stance classification with self-attention networks[J]. arXiv:1805.06593, 2018. [17] XU B, MOHTARAMI M, GLASS J. Adversarial domain adaptation for stance detection[J]. arXiv:1902.02401, 2019. [18] WANG Z, WANG Q S, LV C G, et al. Unseen target stance detection with adversarial domain generalization[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. [19] WEI P H, MAO W J, WEI P H, et al. Modeling transferable topics for cross-target stance detection[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 1173-1176. [20] ZHANG B W, YANG M, LI X T, et al. Enhancing cross-target stance detection with transferable semantic-emotion knowledge[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3188-3197. [21] ALLAWAY E, MCKEOWN K. Zero-shot stance detection: a dataset and model using generalized topic representations[J]. arXiv:2010.03640, 2020. [22] CONFORTI C, BERNDT J, PILEHVAR M T, et al. Synthetic examples improve cross-target generalization: a study on stance detection on a twitter corpus[C]//Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2021: 181-187. [23] LIANG B, FU Y H, GUI L, et al. Target-adaptive graph for cross-target stance detection[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 3453-3464. [24] ALLAWAY E, SRIKANTH M, MCKEOWN K. Adversarial learning for zero-shot stance detection on social media[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 4756-4767. [25] LIU R, LIN Z, TAN Y T, et al. Enhancing zero-shot and few-shot stance detection with commonsense knowledge graph[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 3152-3157. [26] HARDALOV M, ARORA A, NAKOV P, et al. Cross-domain label-adaptive stance detection[J]. arXiv:2104.07467, 2021. [27] LUO Y, LIU Z H, SHI Y, et al. Exploiting sentiment and common sense for zero-shot stance detection[C]//Proceedings of the International Conference on Computational Linguistics, 2022. [28] LIANG B, CHEN Z X, GUI L, et al. Zero-shot stance detection via contrastive learning[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2738-2747. [29] JI H S, LIN Z, FU P, et al. Cross-target stance detection via refined meta-learning[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 7822-7826. [30] LIANG B, ZHU Q L, LI X, et al. JointCL: a joint contrastive learning framework for zero-shot stance detection[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 81-91. [31] LIU R, LIN Z, FU P, et al. Connecting targets via latent topics and contrastive learning: a unified framework for robust zero-shot and few-shot stance detection[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 7812-7816. [32] HE Z H, MOKHBERIAN N, LERMAN K. Infusing knowledge from wikipedia to enhance stance detection[J]. arXiv: 2204. 03839, 2022. [33] LIU Y J, ZHANG X F, WEGSMAN D, et al. POLITICS: pretraining with same-story article comparison for ideology prediction and stance detection[J]. arXiv:2205.00619, 2022. [34] ZHU Q L, LIANG B, SUN J Y, et al. Enhancing zero-shot stance detection via targeted background knowledge[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 2070-2075. [35] FU Y J, LI X L, LI Y, et al. Incorporate opinion-towards for stance detection[J]. Knowledge-Based Systems, 2022, 246: 108657. [36] JIANG Y, GAO J H, SHEN H W, et al. Few-shot stance detection via target-aware prompt distillation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 837-847. [37] PAVAN M C, PARABONI I. Cross-target stance classification as domain adaptation[C]//Advances in Computational Intelligence. Cham: Springer Nature Switzerland, 2022: 15-25. [38] ZOU J Y, ZHAO X C, XIE F, et al. Zero-shot stance detection via sentiment-stance contrastive learning[C]//Proceedings of the 2022 IEEE 34th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2022: 251-258. [39] SUN Q Y, XI X F, SUN J J, et al. Stance detection with a multi-target adversarial attention network[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2022, 22(2): 40. [40] ZHENG K, SUN Q F, YANG Y M, et al. Knowledge stimulated contrastive prompting for low-resource stance detection[C]//Findings of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 1168-1178. [41] ZHAO X C, ZOU J Y, ZHANG Z, et al. Feature enhanced zero-shot stance detection via contrastive learning[C]//Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2023: 900-908. [42] KHIABANI P J, ZUBIAGA A. Few-shot learning for cross-target stance detection by aggregating multimodal embeddings[J]. IEEE Transactions on Computational Social Systems, 2024, 11(2): 2081-2090. [43] LIU R M, KRISHNAN A. PecanPy: a fast, efficient and parallelized Python implementation of node2vec[J]. Bioinformatics, 2021, 37(19): 3377-3379. [44] JIANG Y, GAO J H, SHEN H W, et al. Zero-shot stance detection via multi-perspective contrastive learning with unlabeled data[J]. Information Processing & Management, 2023, 60(4): 103361. [45] BECK T, WALDIS A, GUREVYCH I. Robust integration of contextual information for cross-target stance detection[C]//Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023). Stroudsburg: ACL, 2023: 494-511. [46] WEN H Y, HAUPTMANN A. Zero-shot and few-shot stance detection on varied topics via conditional generation[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 1491-1499. [47] LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[J]. arXiv:1910.13461, 2019. [48] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [49] WELLECK S, KULIKOV I, ROLLER S, et al. Neural text generation with unlikelihood training[J]. arXiv:1908.04319, 2019. [50] HUANG H, ZHANG B W, LI Y Y, et al. Knowledge-enhanced prompt-tuning for stance detection[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2023, 22(6): 159. [51] ZHANG B W, DING D J, XU G N, et al. Twitter stance detection via neural production systems[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [52] ZHAO X C, ZOU J Y, TIAN L, et al. A unified framework for unseen target stance detection based on feature enhancement via graph contrastive learning[C]//Proceedings of the Annual Meeting of the Cognitive Science Society, 2023. [53] SI J S, ZHU Y J, SHI X Y, et al. Explainable topic-enhanced argument mining from heterogeneous sources[J]. arXiv: 2307.12131, 2023. [54] WANG C L, ZHANG Y J, YU X Y, et al. Adversarial network with external knowledge for zero-shot stance detection[C]//Proceedings of the 22nd Chinese National Computational Linguistics, 2023: 824-835. [55] KIM N, MOSALLANEZHAD D, CHENG L, et al. STANCE-C3: domain-adaptive cross-target stance detection via contrastive learning and counterfactual generation[J]. arXiv:2309.15176, 2023. [56] ZHANG R K, YANG H X, MAO W J. Cross-lingual cross-target stance detection with dual knowledge distillation framework[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 10804-10819. [57] LI A, LIANG B, ZHAO J Q, et al. Stance detection on social media with background knowledge[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 15703-15717. [58] DING D J, CHEN R, JING L W, et al. Cross-target stance detection by exploiting target analytical perspectives[J]. arXiv:2401.01761, 2024. [59] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901. [60] DING D J, DAI G N, PENG C, et al. Distantly supervised explainable stance detection via chain-of-thought supervision[J]. Mathematics, 2024, 12(7): 1119. [61] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems, 2022: 24824-24837. [62] ZHANG B W, DING D J, HUANG Z C, et al. Knowledge-augmented interpretable network for zero-shot stance detection on social media[J]. IEEE Transactions on Computational Social Systems, 2024(3): 1-12. [63] ZHANG Z, LI Y M, ZHANG J, et al. LLM-driven knowledge injection advances zero-shot and cross-target stance detection[C]//Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2024: 371-378. [64] KAUSHAL A, SAHA A, GANGULY N. tWT-WT: a dataset to assert the role of target entities for detecting stance of tweets[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 3879-3889. [65] CAMBRIA E, PORIA S, HAZARIKA D, et al. SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1795-1802. [66] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022. [67] ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586-5609. [68] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[M]//Domain adaptation in computer vision applications. Cham: Springer, 2017: 189-209. [69] GHOSH S, SINGHANIA P, SINGH S, et al. Stance detection in web and social media: a comparative study[M]//Experimental IR meets multilinguality, multimodality, and interaction. Cham: Springer, 2019: 75-87. [70] SEN A, SINHA M, MANNARSWAMY S, et al. Stance classification of multi-perspective consumer health information[C]//Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, 2018: 273-281. [71] KAWINTIRANON K, SINGH L. Knowledge enhanced masked language model for stance detection[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 4725-4735. [72] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017:4444-4451. [73] HEINDORF S, SCHOLTEN Y, WACHSMUTH H, et al. CauseNet: towards a causality graph extracted from the web[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 3023-3030. [74] HUANG W D, YANG J Y. A multi-stance detection method by fusing sentiment features[J]. Applied Sciences, 2024, 14(9): 3916. [75] HARDALOV M, ARORA A, NAKOV P, et al. Few-shot cross-lingual stance detection with sentiment-based pre-training[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 10729-10737. [76] UPADHYAYA A, FISICHELLA M, NEJDL W. A multi-task model for sentiment aided stance detection of climate change tweets[C]//Proceedings of the International AAAI Conference on Web and Social Media, 2023: 854-865. [77] LIU G T, ZHANG Y J, WANG C L, et al. Comparative learning based stance agreement detection framework for multi-target stance detection[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108515. [78] SUN Q Y, WANG Z Q, LI S S, et al. Stance detection via sentiment information and neural network model[J]. Frontiers of Computer Science, 2019, 13(1): 127-138. [79] 张钦彤, 王昱超, 王鹤羲, 等. 大语言模型微调技术的研究综述[J]. 计算机工程与应用, 2024, 60(17): 17-33. ZHANG Q T, WANG Y C, WANG H X, et al. Comprehensive review of large language model fine-tuning[J]. Computer Engineering and Applications, 2024, 60(17): 17-33. [80] GAO T Y, FISCH A, CHEN D Q. Making pre-trained language models better few-shot learners[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 3816-3830. [81] LIU X, ZHENG Y, DU Z, et al. GPT understands, too[J]. AI Open, 2023. [82] SCHICK T, SCHüTZE H. Exploiting cloze-questions for few-shot text classification and natural language inference[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg: ACL, 2021: 255-269. [83] SHIN T, RAZEGHI Y, et al. AutoPrompt: eliciting knowledge from language models with automatically generated prompts[J]. arXiv:2010.15980, 2020. [84] PETRONI F, ROCKT?SCHEL T, RIEDEL S, et al. Language models as knowledge bases? [C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 2463-2473. [85] LI Y J, SOSEA T, SAWANT A, et al. P-stance: a large dataset for stance detection in political domain[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2355-2365. [86] 张雄伟, 葛晓义, 孙蒙, 等. 音频隐写方法综述: 从传统到深度学习[J]. 数据采集与处理, 2023, 38(5): 995-1016. ZHANG X W, GE X Y, SUN M, et al. An overview of audio steganography methods: from tradition to deep learning[J]. Journal of Data Acquisition and Processing, 2023, 38(5): 995-1016. [87] WEINZIERL M, HARABAGIU S. Identification of multimodal stance towards frames of communication[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 12597-12609. [88] LIANG B, LI A, ZHAO J Q, et al. Multi-modal stance detection: new datasets and model[J]. arXiv:2402.14298, 2024. |
| [1] | 苏振强, 苟刚. 联合知识和视觉信息推理的视觉问答研究[J]. 计算机工程与应用, 2024, 60(5): 95-102. |
| [2] | 谢泽, 陈庆锋, 莫少聪, 刘春雨, 邱俊铼. 知识增强的双通道多头GCN用于方面级情感分析[J]. 计算机工程与应用, 2024, 60(17): 98-106. |
| [3] | 张启阳, 陈希亮, 曹雷, 赖俊. 基于好奇心机制改进的策略优化算法[J]. 计算机工程与应用, 2023, 59(11): 63-70. |
| [4] | 赵圆丽,梁志剑. 基于异核卷积双注意机制的立场检测研究[J]. 计算机工程与应用, 2021, 57(8): 119-125. |
| [5] | 马丽红,谭学仕. 共有结构假设下流形正则图的零样本分类方法[J]. 计算机工程与应用, 2019, 55(15): 153-160. |
| [6] | 奠雨洁,金 琴,吴慧敏. 基于多文本特征融合的中文微博的立场检测[J]. 计算机工程与应用, 2017, 53(21): 77-84. |
| [7] | 刘 伟,张化祥. 数据集动态重构的集成迁移学习[J]. 计算机工程与应用, 2010, 46(12): 126-128. |
| [8] | 翟琳琳 陈仪香. 隐马尔科夫模型在智能学习系统中的应用[J]. 计算机工程与应用, 2007, 43(6): 178-180. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||