[1] PICARD R W. Affective computing[M]. London: MIT Press, 2000.
[2] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedbackC]//Advances in Neural Information Processing Systems, 2022: 27730-27744.
[3] ZHAO W, LI Z, WANG S, et al. Both matter: enhancing the emotional intelligence of large language models without compromising the general intelligence[J]. arXiv:2402.10073, 2024.
[4] MAYER J D, SALOVEY P, CARUSO D R, et al. Emotional intelligence as a standard intelligence[J]. Emotion, 2001, 1(3): 232-242.
[5] GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: a neural language model for customizable affective text generation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 634-642.
[6] ZHOU H, HUANG M L, ZHANG T Y, et al. Emotional chatting machine: emotional conversation generation with internal and external memoryC]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 730-739.
[7] MA Z Q, JIA W C, ZHOU Y T, et al. Personality enhanced emotion generation modeling for dialogue systems[J]. Cognitive Computation, 2024, 16(1): 293-304.
[8] 周钰童, 马志强, 许璧麒, 等. 基于深度学习的对话情绪生成研究综述[J]. 计算机工程与应用, 2024, 60(7): 13-25.
ZHOU Y T, MA Z Q, XU B Q, et al. Survey of deep learning-based on emotion generation in conversation[J]. Computer Engineering and Applications, 2024, 60(7): 13-25.
[9] WEI W, LIU J Y, MAO X L, et al. Emotion-aware chat mac-hine: automatic emotional response generation for human-like emotional interaction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1401-1410.
[10] GU X S, XU W R, LI S. Towards automated emotional conversation generation with implicit and explicit affective strategy[C]//Proceedings of the 2019 International Symposium on Signal Processing Systems. New York: ACM, 2019: 125-130.
[11] GONG M M, SONG H, ZHOU H R, et al. Enhancing resp-onse relevance and emotional consistency for dialogue resp-onse generation[C]//Proceedings of the 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). Piscataway: IEEE, 2022: 1-6.
[12] ZHANG R, WANG Z Y, HUANG Z H, et al. Predicting emotion reactions for human computer conversation: a variational approach[J]. IEEE Transactions on Human-Machine Systems, 2021, 51(4): 279-287.
[13] WEN Z Y, CAO J N, YANG R S, et al. Automatically select emotion for response via personality-affected emotion transition[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 5010-5020.
[14] 马志强, 王春喻, 贾文超, 等. 情感导向对话回复生成模型[J]. 中文信息学报, 2023, 37(8): 104-114.
MA Z Q, WANG C Y, JIA W C, et al. Emotion guided dialogue response generation model[J]. Journal of Chinese Information Processing, 2023, 37(8): 104-114.
[15] LUBIS N, SAKTI S, YOSHINO K, et al. Eliciting positive emotion through affect-sensitive dialogue response generation: a neural network approach[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 5293-5300.
[16] 李大宇. 多轮文本对话中的情绪预测方法研究[D]. 太原: 山西大学, 2021.
LI D Y. Research on emotion prediction in multi-turn textual conversations[D]. Taiyuan: Shanxi University, 2021.
[17] YANG L, SHEN Y, MAO Y, et al. Hybrid curriculum learning for emotion recognition in conversation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 11595-11603.
[18] LIU Y C, ZHAO J M, HU J W, et al. DialogueEIN: emotion interaction network for dialogue affective analysis[C]//Proceedings of the International Conference on Computational Linguistics, 2022 : 684-693.
[19] ZHAO W X, ZHAO Y Y, WANG S L, et al. TransESC: smoothing emotional support conversation via turn-level state transition[C]//Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg: ACL, 2023: 6725-6739.
[20] KIM W, AHN Y, KIM D, et al. Emp-RFT: empathetic resp-onse generation via recognizing feature transitions between utterances[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4118-4128.
[21] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019.
[22] SHARMA A, MINER A, ATKINS D, et al. A computational approach to understanding empathy expressed in text-based mental health support[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 5263-5276.
[23] ZOU Y C, LIU Z H, HU X W, et al. Thinking clearly, talking fast: concept-guided non-autoregressive generation for open-domain dialogue systems[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 2215-2226.
[24] LI B B, FEI H, SU F F, et al. Integrating discourse features and response assessment for advancing empathetic dialogue[J]. Information Processing & Management, 2024, 61(5): 103803.
[25] MAJUMDER N, PORIA S, HAZARIKA D, et al. Dialogue-RNN: an attentive RNN for emotion detection in convers-ations[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 6818-6825.
[26] GHOSAL D, MAJUMDER N, PORIA S, et al. Dialogue-GCN: a graph convolutional neural network for emotion recognition in conversation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 154-164.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[28] WILDER J W. New concepts in technical trading systems[M]. Greensboro, NC: Trend Research, 1978.
[29] 黄宏程, 李净, 胡敏, 等. 基于强化学习的机器人认知情感交互模型[J]. 电子与信息学报, 2021, 43(6): 1781-1788.
HUANG H C, LI J, HU M, et al. Cognitive emotional interaction model of robot based on reinforcement learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1781-1788.
[30] 黄宏程, 刘宁, 胡敏, 等. 基于博弈的机器人认知情感交互模型[J]. 电子与信息学报, 2019, 41(10): 2471-2478.
HUANG H C, LIU N, HU M, et al. Cognitive emotion interaction model of robot based on game theory[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2471-2478. |