计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 241-250.DOI: 10.3778/j.issn.1002-8331.2406-0001

• 模式识别与人工智能 • 上一篇    下一篇

基于多样性情绪的积极导向自然过渡决策模型

马志强,吕凯,周钰童,刘佳,叶浩然,刘义兴,王奎波   

  1. 1.内蒙古工业大学 数据科学与应用学院,呼和浩特 010080 
    2.内蒙古工业大学 内蒙古自治区基于大数据的软件服务工程技术研究中心,呼和浩特 010080
  • 出版日期:2025-09-01 发布日期:2025-09-01

Positive Orientation and Natural Transition Decision Model Based on Diverse Emotions

MA Zhiqiang, LYU Kai, ZHOU Yutong, LIU Jia, YE Haoran, LIU Yixing, WANG Kuibo   

  1. 1.College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
    2.Inner Mongolia Autonomous Region Engineering & Technology Research Centre of Big Data Based Software Service, Inner Mongolia University of Technology, Hohhot 010080, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 在对话系统中情绪生成任务旨在生成待回复话语中的情绪类别。针对现有情绪生成方法中个性化情绪积极自然过渡机制的缺失,造成情绪状态生成连贯性问题,提出积极导向自然过渡决策模型(positive orientation and natural transition decision model,PONTD)用于进行多样化情绪预测后情绪决策,以解决情绪生成连贯性问题。PONTD包含三个单元:一是多样化情绪预测单元,设计多组不同结构和参数的模型,并采用共同注意力融合方法,实现对情绪状态的多样化预测;二是情绪正向引导单元,利用预测的多样性情绪状态,赋予对话人格,引导情绪根据情绪极性进行转化,并利用SetRank模型将情绪进行重排,以实现个性化积极的情绪导向;三是个性化自然过渡单元,通过对多样性情绪状态进行关联感知,根据人格PAD情绪空间映射规则进行情绪矫正,并利用对话历史情绪序列控制时机,实现情绪的自然平滑过渡。实验结果表明,PONTD能有效提升情绪表达的连贯性,提高了对话系统情绪智能。

关键词: 对话系统, 情绪生成, 个性化情绪, 情绪决策, 对话人格

Abstract: In the task of emotion generation in dialogue systems, the objective is to generate the emotional category in the response sentences. Addressing the lack of a personalized mechanism for a positive and natural transition of emotions in existing emotion generation methods, which leads to coherence issues in the generation of emotional states, this paper proposes the positive orientation and natural transition decision model (PONTD) for diversified emotional prediction and decision-making to solve the problem of emotional generation coherence. PONTD consists of three components: first, a diversified emotional prediction unit, where multiple models with different structures and parameters are designed and a common attention fusion method is employed to predict various emotional states; second, a positive emotional orientation unit, which utilizes the predicted diverse emotional states to endow the dialogue with personality, guides the transition of emotions based on their polarity, and employs the SetRank model to reorder emotions, achieving personalized positive emotional guidance; and third, a personalized natural transition unit, which correlates the diverse emotional states through associative perception, corrects emotions according to personality PAD emotion space mapping rules, and uses the dialogue history emotion sequence to control timing, realizing a natural and smooth transition of emotions. Experimental results show that PONTD can effectively enhance the coherence of emotional expression and improve the emotional inte-lligence of dialogue systems.

Key words: dialogue system, emotion generation, personalized emotion, emotion decision, dialogue personality