计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 368-376.DOI: 10.3778/j.issn.1002-8331.2405-0313

• 工程与应用 • 上一篇    

基于双流关系注意力的领域自适应癌症诊断

石航,吴雅文,张道强,邵伟   

  1. 1.南京航空航天大学 计算机科学与技术学院,南京 210016 
    2.南京航空航天大学 深圳研究院,广东 深圳 518000
  • 出版日期:2025-09-15 发布日期:2025-09-15

Dual-Stream Relation-Aware Attention Guided Domain Adaptation for Cancer Diagnosis

SHI Hang, WU Yawen, ZHANG Daoqiang, SHAO Wei   

  1. 1.College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2.Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, Guangdong 518000, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 近年来,随着数字病理成像技术的飞速发展和深度学习算法的日益成熟,利用深度学习算法分析数字病理图像并对癌症进行诊断已成为研究热点。现有深度学习方法多采用全监督学习模式,其成效依赖于标记数据的数量,但病理专家精力有限,造成精准标注数据严重稀缺。为了降低标注代价,一些研究者通过设计迁移学习方法利用源域诊断信息对目标域样本标签进行预测。但现有迁移学习方法未考虑肿瘤与肿瘤浸润淋巴细胞交互作用对肿瘤诊断具有的重要参照价值。同时,由于源域和目标域数据分布存在差异,且数据质量参差不齐,直接对齐源域和目标域的特征空间可能会导致负迁移现象。针对上述问题,提出一种基于双流关系注意力的领域自适应癌症诊断方法。该方法分为图像包可转移注意力模块和示例可转移注意力模块。图像包可转移注意力模块采用双流架构,域内流利用自注意力机制学习源域和目标域内的肿瘤和肿瘤淋巴浸润细胞之间的交互关系,域间流基于交叉注意力并通过交换源域和目标域的查询集合学习域间关系。示例可转移注意力模块则用于筛选在源域和目标域上具有共性的图像块。实验结果表明该方法性能在TCGA乳腺癌和肾癌两个公共数据集的四个基准任务上优于其他领域自适应方法。

关键词: 可转移注意力, 领域自适应, 癌症诊断, 多对抗训练, 病理图像

Abstract: Recently, with the rapid development of digital photography technology and deep learning algorithms, the use of deep learning algorithms for processing and analyzing digital pathology images has become a hot topic. However, traditional fully supervised methods require a quantity of annotated data, which is labor-intensive and costly due to the diversity and heterogeneity of cancer subtypes. To reduce the cost of annotation, researchers have started exploring how to assist in the diagnosis of cancer subtypes with limited or no labeled data by transferring the knowledge learned from labeled cancer data. Nevertheless, existing transfer learning methods often overlook the similar spatial interaction relationships between tumors and tumor-infiltrating lymphocytes (TILs). In addition, the direct alignment of feature spaces between source and target domains may lead to negative transfer phenomena. Based on this, a dual-stream relation-aware attention (DRA) guided domain adaptation for cancer diagnosis is proposed. Specifically, DRA model consists of two modules to learn the transferable components: the bag-level transferable attention module (BTA) and the patch-level transferable attention module (PTA). The former BTA learns the intra-domain and inter-domain spatial interaction relationship by the self and cross-attention mechanism, respectively. Meanwhile, the latter PTA is introduced to identify the candidate patches for the spatial interaction relationship transfer. Proposed method is evaluated on two WSI datasets and the superior performance demonstrates the effectiveness of the DRA method in cross-domain cancer diagnosis.

Key words: transferable attention, domain adaption, cancer diagnosis, multi-adversarial training, histopathology images