[1] WANG S, LIU Z Y, RONG Y, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer[J]. Radiotherapy and Oncology, 2019, 132: 171-177.
[2] COUTURE H D, WILLIAMS L A, GERADTS J, et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype[J]. NPJ Breast Cancer, 2018, 4: 30.
[3] COURTIOL P, MAUSSION C, MOARII M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome[J]. Nature Medicine, 2019, 25(10): 1519-1525.
[4] REN J, HACIHALILOGLU I, SINGER E A, et al. Unsupervised domain adaptation for classification of histopathology whole-slide images[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 102.
[5] MAHAPATRA D, KOREVAAR S, BOZORGTABAR B, et al. Unsupervised domain adaptation using feature disentanglement and GCNs for medical image classification[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2023: 735-748.
[6] HUANG P, ZHOU X L, HE P, et al. Interpretable laryngeal tumor grading of histopathological images via depth domain adaptive network with integration gradient CAM and priori experience-guided attention[J]. Computers in Biology and Medicine, 2023, 154: 106447.
[7] WANG Z, ZHU X Y, LI A, et al. Global and local attentional feature alignment for domain adaptive nuclei detection in histopathology images[J]. Artificial Intelligence in Medicine, 2022, 132: 102341.
[8] MIYOSHI Y, SHIEN T, OGIYA A, et al. Associations in tumor infiltrating lymphocytes between clinicopathological factors and clinical outcomes in estrogen receptor-positive/human epidermal growth factor receptor type 2 negative breast cancer[J]. Oncology Letters, 2019, 17(2): 2177-2186.
[9] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks? [J]. arXiv:1411.1792, 2014.
[10] YANG J Y, LIU J J, XU N, et al. TVT: transferable vision transformer for unsupervised domain adaptation[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 520-530.
[11] XU T K, CHEN W H, WANG P C, et al. CDTrans: cross-domain transformer for unsupervised domain adaptation[J]. arXiv:2109.06165, 2021.
[12] DALLE J R, LEOW W K, RACOCEANU D, et al. Automatic breast cancer grading of histopathological images[C]//Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2008: 3052-3055.
[13] WAN T, CAO J J, CHEN J H, et al. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features[J]. Neurocomputing, 2017, 229: 34-44.
[14] ERTOSUN M G, RUBIN D L. Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks[C]//AMIA Annual Symposium Proceedings, 2015: 1899-1908.
[15] LU C, ROMO-BUCHELI D, WANG X X, et al. Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers[J]. Laboratory Investigation, 2018, 98(11): 1438-1448.
[16] PERINCHERI S, LEVI A W, CELLI R, et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy[J]. Modern Pathology, 2021, 34(8): 1588-1595.
[17] PANTANOWITZ L, QUIROGA-GARZA G M, BIEN L, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study[J]. The Lancet Digital Health, 2020, 2(8): e407-e416.
[18] STR?M P, KARTASALO K, OLSSON H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study[J]. The Lancet Oncology, 2020, 21(2): 222-232.
[19] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[20] LIU B. Lifelong machine learning: a paradigm for continuous learning[J]. Frontiers of Computer Science, 2017, 11(3): 359-361.
[21] HUANG Y, ZHENG H, LIU C, et al. Epithelium-stroma classification via convolutional neural networks and unsupervised domain adaptation in histopathological images[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(6): 1625-1632.
[22] YU X, ZHENG H, LIU C, et al. Classify epithelium-stroma in histopathological images based on deep transferable network[J]. Journal of Microscopy, 2018, 271(2): 164-173.
[23] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971.
[24] CHEN C Q, XIE W P, WEN Y, et al. Multiple-source domain adaptation with generative adversarial nets[J]. Knowledge-Based Systems, 2020, 199: 105962.
[25] GANIN Y, LEMPITSKY V S. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the International Conference on Machine Learning, 2014.
[26] ZUO Y L, WU Y W, LU Z X, et al. Identify consistent imaging genomic biomarkers for characterizing the survival-associated interactions between tumor-infiltrating lymphocytes and tumors[C]//Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2022: 222-231.
[27] BERMAN M, TRIKI A R, BLASCHKO M B. The lovasz-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4413-4421.
[28] ZHANG A R, XU J, LUO X Y, et al. Cross-domain attention network for unsupervised domain adaptation crowd counting[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6686-6699.
[29] LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1410-1417.
[30] GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2066-2073.
[31] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
[32] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv:1412.3474, 2014.
[33] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17(59): 1-35.
[34] SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[35] DAMODARAN B B, KELLENBERGER B, FLAMARY R, et al. DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 467-483.
[36] ZHANG Y C, LIU T L, LONG M S, et al. Bridging theory and algorithm for domain adaptation[C]//Proceedings of the International Conference on Machine Learning, 2019. |